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Abstract

We analyze a flow of an single crystal compressed in a channel die. After an initial adjustment
to a tool, specimens twisted under high axial compression do not change their shape and they
withstand unlimited amount of plastic deformation. An initial unsteady material flow is followed
by a steady flow where no further work hardening is observed. Looking at other severe plastic
deformation experiments, it seems that crystalline materials at yield behave as a special kind of
anisotropic, highly viscous fluids. High viscosity provides a possibility to describe the flow as a
quasi-static process, where inertial and other body forces can be neglected. The flow through the
lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In
the deformation process the lattice is strained and rotated. The formation of the substructure is
interpreted as instabilities of the homogeneous material flow. The proposed model is based on the
rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient
and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The
proposed crystal plasticity model allowing for severe deformations is treated as the flow-adjusted
boundary value problem in Euler representation.

1 Introduction

Considering severe plastic deformation experiments as a motivation [1, 2, 3, 4, 5], plastic behaviour of
crystalline solids is treated as a highly viscous material flow through an adjustable crystal lattice space 1.
To look at crystal plasticity as a material flow through the lattice space has been regarded by Asaro [6]
as crystal plasticity ”basic tenet”. It seems that crystalline materials at yield behave as a special kind of
incompressible, anisotropic, highly viscous fluids 2. High viscosity provides a possibility to describe the
flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through
the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In
the deformation process the lattice space is adjusted to the material flow by a lattice distortion, i.e. by
rotation and stretching. The lattice space is treated as a solid, its distortion is measured with respect to a
lattice reference configuration. The microscopic inspection reveals a structural adjustment of the crystal
lattice space to the material flow seen as a deformation substructure observed in electron micrographs.

Let us note that traditional solution of finite crystal plasticity is based on Lagrangian convected
coordinate representation, see e.g. [8]. The presented form of crystal plasticity provides a possibility to
treat the flow-adjustment boundary value problem alternatively as quasi-static fluid flow in Euler repre-
sentation. Inspired by numerical methods of fluid dynamics FEM Eulerian representation is formulated
and applied in a solution of a flow adjustment elasto-plastic boundary value problem of compression of
a single crystal. The Eulerian approach has been employed for a rigid-plastic model in a recent paper
[9] with emphasis on dynamical problems. In the present paper the interest is focused on a deformation
substructure represented by the adjusted lattice space.

Instead of the traditional decomposition rule F = FeFp considering the deformation gradient F as a

1The term ”space” is used deliberately, as the crystal lattice is understood as a space of preferred positions in a crystalline
phase considered regardless of particles staying or flowing through them.

2We mean a fluid in a generalized sense proposed e.g. by Rajagopal et al. [7].
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product of the elastic Fe and plastic Fp parts, the proposed model is based on the rate form of this rule

L = Le +

N∑
i=1

ν(i)s(i) ⊗m(i) .

The basic kinematic quantities are the velocity gradient L and its two parts: the lattice velocity gradient
Le of elastic nature which measures the adjustment rate of the lattice space, and the rate of material
flow consisting of contributions of the individual slip rates ν(i), i = 1, 2, . . . , N ; s(i) and m(i) are the
slip directions and the unit normal to the slip planes in the current configuration, respectively. The
deformation gradient F and slips γ(i), in a sense γ̇(i) = ν(i) are not defined in the model3. They may
be recovered a posteriori. For a chosen reference configuration, F can be revealed by time integration
of the velocity gradient field, Ḟ F−1 = L. Similarly, the slips carried by individual slip systems could
be obtained from the corresponding slip rates ν(i) gained by a solution of a flow-adjustment boundary
value problem formulated in the next section.

The organization of the paper is as follows. In Section 2, we introduce the kinematics and formulate
the model. The computational method together with the result of numerical simulations are discussed
in Section 3. Moreover in Appendix we provide detailed derivation of the evolution equation for the
Cauchy stress.

2 Flow model

Kinematics of the model is characterized by the velocity field v(x, t) and the lattice deformation gradient
Fe(x, t); x is a position at the current configuration, t means time, v describes the material flow in the
current configuration, and Fe controls the adjustment of the lattice space in the current configuration
with respect to the lattice reference configuration.

The velocity gradient decomposes as follows L = ∇v = D + W , where D = (∇v + (∇v)T )/2
is the stretching and W = (∇v − (∇v)T )/2 is the spin; ∇ denotes the spatial gradient with respect
to the coordinates x in the current configuration. The velocity gradient L consists of the lattice rate
Le = Ḟe(Fe)−1 and the plastic rate Lp (a superposed dot means time derivative with respect to lattice
space)

L = ∇v = Ḟ F−1 = Le + Lp and D = De + Dp, (1)

where De and Dp are the symmetric parts of Le and Lp, respectively.
The lattice deformation gradient Fe involves small elastic stretches and rigid body rotations of the

lattice space as expressed in the polar decomposition

Fe = ReUe (J = detFe for later reference), (2)

where Re is the lattice rotation field. The right stretch tensor Ue is related to the Green tensor Ee =
[(Ue)2 − I]/2 = [(Fe)TFe − I]/2, where I stands for identity the matrix.

The rate of Ee can be expressed as

Ėe =
1

2

(
Fe

T Ḟe + Ḟe
T
Fe

)
=

1

2
Fe

T
(
ḞeFe

−1 + Fe
−T Ḟe

T
)
Fe = Fe

TDeFe. (3)

The material flow takes place on prescribed slip systems (i), i = 1, 2, . . . , N ; N is the number of slip
systems. In the current configuration (i) slip system is defined by the unit vector s(i) in the direction of
slip and by the unit normal to the glide plane m(i). The lattice vectors s(i) and m(i) are transformed
from the lattice reference configuration into the current configuration,

s(i) = Fes
(i)
0 , m(i) = (Fe)−Tm

(i)
0 , (4)

where s
(i)
0 ,m

(i)
0 are the unit vectors fixed in the lattice reference configuration. They are determined by

the crystallographic structure of the material.

3As recalled by Gurtin [10], the existence of γ such that the material time derivative γ̇ = ν is unique to single slip.
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The flow is governed by slip rates ν(i)(x, t) on the individual slip systems via the flow rule

Lp =

N∑
i=1

ν(i)s(i) ⊗m(i) . (5)

By taking the time derivative of the relations (4) and substituting Ḟe from (1), we obtain the equation
that describes the evolution of the slip and normal directions

˙s(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)
s(i), ṁ(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)−T
m(i). (6)

The deformation process is governed by the Cauchy stress T (x, t). The fields v and T have to satisfy
the stress equilibrium

%v̇ − divT = 0, T = T T , (7)

where % stands for the density and is subjected to the mass balance

%̇+ %div v = 0. (8)

The evolution of the Cauchy stress is given by

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp). (9)

For detailed derivation of (9) and definition of the fourth order tensor C, we refer to Appendix.
The second law of thermodynamics expressed in a form convenient for the present consideration reads

T : D − %Ψ̇ ≥ 0 , (10)

Ψ represents a Helmholtz potential.
The Cauchy stress T controls the slip rates ν(i) through the resolved shear stresses τ (i)

τ (i) = s(i) · Tm(i). (11)

Considering rate dependent (visco-plastic) version of the flow model the resolved shear stresses τ (i) are
assumed to be coupled with the slip rates ν(i) through a power law constitutive equation (viscous-plastic
yield condition assumed by Kuroda [11])

ν(i) = ν0 sgn(τ (i))

(
|τ (i)|
g(i)

)1/m

, (12)

where ν0 is the characteristic slip rate, g(i) > 0 is the slip resistance, and m > 0 is a material parameter
which controls the rate sensitivity.

The slip resistances g(i), i = 1, 2, . . . , N , are governed by the evolution equations,

ġ(i) =

N∑
j=1

Hij |ν(j)| , g(i)|t=0 = g0 , (13)

where the hardening matrix components Hij = H0 sech2
(
H0νacc

gs−g0

)
, with the initial hardening rate

H0 = 8.9g0, the saturation strength gs = 1.8g0 and the accumulated slip νacc(t) =
∑
i

∫ t
0
|ν(i)|dt, see [6].

We conclude this section with formulation of initial boundary value problem for the unknown density
%, the velocity v, the Cauchy stress tensor T , the slip directions s(i), and the normal to slip planes m(i),
which is given by the system of equations

%̇+ %div v = 0,

%v̇ − divT = 0,

Ṫ + Tdiv v −LeT − TLe
T = %C(D −Dp),

ṡ(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)
s(i), ṁ(i) =

(
∇v −

N∑
i=1

ν(i)s(i) ⊗m(i)

)−T
m(i),

(14)
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where ν(i) is given by (12), Dp =
∑N
i=1 ν

(i)sym(s(i)⊗m(i)) and ġ(i) is defined by (13). The system (14)
holds for all x ∈ Ω and all t ∈ [0,∞) and is endowed with initial and boundary conditions

%(x, 0) = %0(x) for x ∈ Ω,

s(i)(x, 0) = (cos(φi0(x)), sin(φi0(x))), for x ∈ Ω,

m(i)(x, 0) = (− sin(φi0(x)), cos(φi0(x))), for x ∈ Ω,

T (x, 0) = 0 for x ∈ Ω,

v(x, t) = v0(x, t) for x ∈ ΓD × [0,∞),

T (x, t)n = 0 for x ∈ ΓN × [0,∞),

(15)

where ∂Ω = ΓD ∪ ΓN and %0, v0, φi0 are given functions.

3 Plane strain compression of single crystal
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Figure 1: Channel-die compression scheme
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Figure 2: Scheme of slip systems

3.1 Channel-die compression

As a model problem we consider a rectangular-shaped single crystal with two or three slip systems, that
is subjected to channel-die compression under plane strain conditions as shown in Figure 1. The initial
boundary conditions are taken as in (15), with ΓD = Γ1∪Γ3 and ΓN = Γ2∪Γ4. Namely, for the velocity
(v = (v1, v2)) and the Cauchy stress are assumed to be

v2 = V on Γ1, v2 = 0 on Γ3, Tn = 0 on Γ2 ∪ Γ4.

Characteristic values are set to satisfy following ratios

E

g0
= 1000,

ν0L

V
= 1, (16)

where E stands for Young’s modulus and V , L, ν0 are reference: velocity, length and slip rate, respec-
tively. Note, that g0 was defined in (13).

3.2 Finite element formulation

While the Eulerian formulation is very well suited for flow-like problems, as for example the 2-turn
Equal Channel Angular Extrusion experiment [12], in the case of simple compression we deal with a free
boundary problem. Here we employ the Arbitrary Lagrangian Eulerian (ALE) approach in the sense
that we use our Eulerian formulation on a moving mesh which captures the free boundary.

The time is discretized by a one step finite difference and a mixed finite element discretization is used
in space. The choice of the approximations of each variable consists of P2 elements for the velocity, P1

4



for the density and the lattice rotations (all continuous) and P1-discontinuous for the Cauchy stress and
the slip rates. This leads to the following definitions of the finite-dimensional spaces

Vh = {vh ∈W 1,2(Ω;R2); v|Γ1
= (0,−1), v|Γ3

= (0, 0) v|K ∈ P2(K)2 ∀K ∈ Th},
Rh = {%h ∈W 1,2(Ω;R); %h|Γ1

= 1, %h|K ∈ P1(K) ∀K ∈ Th},
Th = {T h ∈ L2(Ω;R2×2

sym); T h|K ∈ P1(K)2×2 ∀K ∈ Th},
Nh = {νh ∈ L2(R); νh|K ∈ P1(K) ∀K ∈ Th},
Ah = {ϕh ∈W 1,2(Ω;R); ϕh|Γ1

= 0, ϕh|K ∈ P1(K) ∀K ∈ Th}.

Here, Th is the triangulation of our domain with h representing the discretization parametr, for example
the characteristic size of the triangles. The time interval (0, T ) is divided in to steps of length ∆t and
by superscript k we denote the variables at the time level tk.

For the solution algorithm of the system (14) at each timestep the set of the equations is decomposed
into two parts which are solved subsequently in three sub-steps. Given vk−1, %k−1, T k−1, s(i)k−1,
m(i)k−1, ν(i)k−1 and g(i)k−1 from previous time level we proceed as follows:

Step 1: Solve problem for vk, %k,T k, and ν(i)k

%k − %k−1

∆t
+ div (%kvk) = 0,

%k
(
vk − vk−1

∆t
+
(
vk − vk−1

mesh

)
∇vk

)
− divT k = 0,

T k − T k−1

∆t
+
(
vk − vk−1

mesh

)
∇T k + T kdiv vk

−Le
k,k−1T k − T k(Le

k,k−1)T − %kC(Dk −Dp
k,k−1) = 0,

ν(i)k − sgn (T k : s(i)k−1 ⊗m(i)k−1)

(
|T k : s(i)k−1 ⊗m(i)k−1|

g(i)k−1

)1/m

= 0 ∀i ∈ {1, 2, 3},

(17)

where if we use Lp
(i)k−1 = s(i)k−1 ⊗m(i)k−1, we define Le

k,k−1 = ∇vk −
∑N
i=1 ν

(i)kLp
(i)k−1 and

Dp
k,k−1 =

∑N
i=1 ν

(i)ksym
(
Lp

(i)k−1
)

.

Step 2: Move the mesh by uk = vkmesh∆t. The velocity of the mesh motion vkmesh can be taken as the
material velocity vk which in fact leads to a Lagrangian description or it can be choosen arbitrary
with restriction that vkmesh|∂Ω = vk|∂Ω which leads to the ALE description.

Step 3: Compute the new critical stress, the slip directions, and the new normal to the slip planes

s(i)k − s(i)k−1

∆t
+
(
vk − vkmesh

)
∇s(i)k = Le

ks(i)k,

m(i)k −m(i)k−1

∆t
+
(
vk − vkmesh

)
∇m(i)k = (Le

k)−Tm(i)k,

g(i)k − g(i)k−1

∆t
+
(
vk − vkmesh

)
∇g(i)k =

N∑
j=1

hij |ν(j)|

(18)

where Le
k = ∇vk −

∑N
i=1 sgn (T k : s(i)k ⊗m(i)k)

(
|T k:s(i)k⊗m(i)k|

g(i)k

)1/m

s(i)k ⊗m(i)k.

The systems (17) and (18) are formulated in standard weak sense, discretized by means of the mixed
FE spaces mentioned above. To solve the systems we employ a non-linear Newton-Raphson solver with
an analytic evaluation of the Jacobian and use sparse direct solver MUMPS for solving the linear systems.
Implementation is done in the software package FEniCS [13].
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To verify the ability of the proposed algorithm to model crystal plasticity phenomena the simulation
results are compared with Harren et al. experiments [14]. X-ray measurements were carried out by them
to determine the lattice reorientation of the single crystals of various initial crystallographic orientations
in plane strain compression (PSC) in a channel die before macroscopic shear bands appeared, i.e. to
the engineering strain ≈ 0.3-0.9. It was observed that except for crystals oriented symmetrically with
respect to the compression and extension axes, the crystals exhibited an overall common behavior. After
yield, all these crystals started to reorient in such a way that the their crystallographic direction [110]
approached the compression axis and the direction [001] became parallel to the extension axis along
the channel, i.e. these reorientations tend to bring the crystals toward the (110)[001] orientation. The
(110)[001] geometry coincides with a stable state of symmetric slip on four slip systems: (111)[101̄],
(111)[011̄] and (111̄)[101], (111̄)[011]. The net shearing systems associated with this symmetric state are
then [112̄] in (111) and [112] in (111̄), and hence the resulting deformation of this symmetric state is
aligned with the channel; the state of the plane strain crystallographic deformation is approached. In
order to simulate the compression tests of single crystals, Harren et al. [14] employed two-dimensional
single crystal model with two considered slip systems (111)[112̄] and (111̄)[112]. The orientation of the
slip systems with respect to compression axis is φ = arccos ≈ 55◦. The experimental observations and
the computed deformation response are in a close agreement. To test the present approach we use the
same two-dimensional single crystal plane strain compression.

4 Results

The set of value of parameters of compressed material, which satisfies (16), were chosen following nu-
merical studies in [14], namely: the density %0 = 3000 kg/m3, the velocity V = 10−5 m/s = 10 /s, the
length L = 10−2 m, the reference slip rate ν0 = 10−3 1/s, the reference stress g0 = 123 MPa, the Poisson’s
ratio νpois = 0.3, and the rate sensitivity parameter is between m ∈ [0.005, 0.05] that is 1/m ∈ [20, 200].
The rotation of the slip systems are described by the angles of lattice rotation αi, with initial values
(α1

0, α
2
0, α

3
0) = (α0 +ϕ, α0−ϕ, α0 + π

2 ), where ϕ = 54.74◦. In double slip case third slip system is omitted.
Moreover we specify right hand side of (9), i.e. fourth order elasticity tensor C as C(D −D∗) =

λ(tr (D −Dp))I + 2µ(D −Dp), where λ = 576.92g0 and µ = 384.62g0 are the Lame coefficients.
After rescaling the system (14) we notice that characteristic number, which multiplies the dynamic

term in the momentum equilibrium %v̇, R1 = %0V
2

τ0
≈ 3× 10−5. Thus, quasi-static assumption would be

justified in that case. Although we keep this therm for computational purposes.
In what follows by strain we understand the nominal strain e = h−H0

H0
, where h and H0 stand for

current and initial height of the specimen, respectively. All the results where computed up to nominal
strain 0.3.

Simulations were conducted on a structured triangular mesh consists of 37688 vertices (74800 cells).

4.1 The influence of the rate sensitivity

In [14] the imperfection of the specimen was introduce by perturbation of the right-hand side of the
boundary, namely

x1|Γ2
= x1 + 5× 10−6 cos

(
πx2

L0

)
. (19)

The method presented in Section 3.2 was employed to solve initial boundary value problem (14) with
the rate sensitivity parameter m = 0.005 and Γ2 given by (19).

The values of the magnitude of the velocity, the density, and the slip rates for three different strains
are presented in Figure 3.

6



Figure 3: The evolution of the velocity (top-left), the density (top-right),
and the slip rates (bottom) for nominal strains 0.1 (a), 0.2 (b), and 0.3 (c).

4.2 Influence of initial angle of lattice rotation

In this section we address the problem of the compression of double-slip single crystal with the non zero
initial angle of the lattice rotation. The presented method is not able to capture the case presented
in Section 4.1 for initial angle different then zero. Thus to investigate the influence of initial angle of
lattice rotation we consider the rate sensitivity parameter significantly smaller then 0.005, namely 0.05.
In Figure 4 we present result of simulations with different initial orientation for square and rectangular
shaped domains. Initial orientations were set at 0.2 rad = 11.46◦ and 0.4 rad = 22.9◦.

We observe that the angle of lattice rotation has a tendency to decrease, namely during die-compression
orientation of slip systems approaches the symmetric orientation.
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Figure 4: The evolution of the angle of the lattice rotation of double-slip single crystal for
initial lattice rotation 0.2 rad (1) and 0.4 rad (2) for nominal strains 0.1 (a), 0.2 (b), and 0.3 (c).

For similar computational studies we refer to [9] where authors consider 3 slip systems with initial
orientation of 0.417 rad.

4.3 Activity of slip systems

Figure 5 shows the behaviour of individual slip systems. There is a measurable difference between the
alignment of slip activity regions (shear bands) between square and rectangle shaped domains. It is also
worth of noticing that the third slip system is almost inactive.
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