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Abstract

We deal with a modi�cation of the Savage-Hutter model describing granular material with
multivalued friction force. The article examines equivalence between three types of solutions
(entropy, measure-valued and kinetic). The multivalued structure of the system requires a
modi�cation of known de�nitions. It follows also that the obtained results are slightly di�er-
ent than for the classical system.
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1 Introduction

Physical phenomena are rigorously described with the mathematical language of di�erential equa-
tions. This language is natural for continuous processes. However, in real life applications we
often encounter discontinuous phenomena. To �nd appropriate mathematical description of such
laws it is necessary to consider discontinuous functions. We are interested in phenomena that are
modeled by hyperbolic conservation laws with discontinuous terms.

The problem is to develop the proper mathematical theory to deal with discontinuous terms
in PDE. One of the possible ways is to treat a given function as a monotonic graph and then
extend it to a continuous graph. In that way we obtain a continuous mapping, which is not a
function, but a multifunction. For example in [5] the authors consider scalar hyperbolic laws
with discontinuous �ux term and prove the existence and uniqueness of entropy weak solution.
On the other hand in [11] such result for scalar �rst order hyperbolic equations with monotone
discontinuous right hand side has been shown.

We consider a modi�cation of the Savage - Hutter model of granular �ow:
∂
∂th+ ∂

∂x(hv) = 0,

∂
∂t(hv) +

∂
∂x(hv

2 + 1
2βh

2) ∈ hḡ,
(1)
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where (h, v) are functions depending on x, t and ḡ is a given multifunction. The issue of de�nition
of solutions to problem (1) is nontrivial due to the presence of a multifunction. In [9] a notation
of weak entropy solutions was introduced and their existence was shown using viscous approxima-
tion method. The aim of this paper is to introduce new de�nitions (kinetic and measure-valued)
and show relations between di�erent types of solutions.

The �rst new type are solutions of kinetic problem. The theory of kinetic formulation for hyper-
bolic conservation laws was created at the end of twentieth century and summarized in [16]. We
use those formalism to create the de�nition of solutions to kinetic problem for the granular �ow.
We generalize the de�nition of kinetic formulation for Euler model of gas motion as it is similar
to the model that we use, but possess a zero right-hand side. Then Theorem 4.2 shows that the
weak entropy solutions and solutions to the kinetic formulation are equivalent.

The last type are measure-valued solutions. Here we adapt a 2D de�nition from [10], where
the existence was shown. Then we take the proper measures and obtain weak entropy solutions.
In the classical theory to obtain weak entropy solutions from measure-valued formulation it is
necessary to take the family of Dirac measures. In our situation the problem appears in the point
when u2 = 0. We require that the particular Young measure has to be Dirac delta in the point
where right-hand side of second equation is a singular valued. In other points the formula for that
measure is more complicated. We prove in Theorem 5.1 that if the family of Young measures is
a.e. Dirac measures than the measure-valued solutions are also weak entropy solutions.

The main results of the paper are Theorems 4.2 and 5.1 where we show interactions between
di�erent de�nitions of solutions.

The paper is organized as follows. In section 2 we introduce the model of granular �ow and
the notation that we use. In section 3 we present de�nitions of three types of solutions. Section 4
proves that weak entropy solutions and solutions to the kinetic problem are equivalent (Theorem
4.2). In section 5, Theorem 5.1 shows how to obtain weak entropy solutions from measure-valued
problem.

2 The model of granular �ow

We would like to model avalanche motion using conservation laws [1, 9, 11, 17]. We treat snow
as a granulate. We are looking for the height of snow layer h: R+ ×R → R+ and the velocity of
snow: v: R+ × R → R. We assume that h, v depends on time and that the granulate is moving
downhill. For the sake of simplicity we assume that the snow layer and the hill are in�nitely long
and invariant to the translation along vector �eld orthogonal to the direction of the gravity force.
That is why it is possible to reduce the two-dimensional model to one-dimensional situation. It
leads us to the model from [17], where using hyperbolic conservation laws, the avalanche motion
is described with following system:

∂
∂th+ ∂

∂x(hv) = 0,

∂
∂t(hv) +

∂
∂x(hv

2 + 1
2βh

2) = hg,
(2)

where β is the coe�cient depending on the angle between the curve of the hill and horizontal
direction. The other simpli�cation is the assumption that β is greater than zero and that it is
constant. It means that the hill has the constant slope. An easy observation is that the variables
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(h, v) can be scaled in such a way that the coe�cient β vanishes. The function g(v, x) is de�ned
as:

g(v, x) = sin(γ)− sgnM0(v) cos(γ) tan(δF (x)), (3)

where −π
2 < γ < π

2 is the angle between the horizontal direction and the curve of the hill. The
function δF (x) describes the friction between the base and the granulate. It is equal to the critical
angle of slope where the granulate starts to move which depends on the type of the base. That
is why it change with x despite the fact that γ is constant. We also assume that δF (x) ∈ C1(R),
and function sgnM0 is given by:

sgnM0(v) =

 0 for v = 0,

v
|v| for v ̸= 0.

The main problem is the discontinuity of the function g in v = 0. That is why in [9] instead of
the function g the multifunction was considered:

ḡ(v, x) = sin(γ(x))− sgnM(v) cos(γ(x)) tan(δF (x)),

where

sgnM(v) =

 [−1, 1] for v = 0,

v
|v| for v ̸= 0.

Moreover we assume that the sign of ḡ is opposite to the sign of velocity v.

After introducing new variables: u = (u1, u2) = (h, hv) we obtain:

∂

∂t
u+

∂

∂x
F (u) ∈ Ḡ(u, x), (4)

where

F (u) =

 u2

u2
2

u1
+ 1

2u
2
1

 , and Ḡ(u, x) =

 0

u1ḡ(
u2
u1
, x)

 .

In our analysis we will use both types of variables: (h, v) and (u1, u2). Note that the transforma-
tion from (u1, u2) into (h, v) is not well de�ned when u1 = 0. This point is called vacuum.

3 De�nitions of solutions

We deal with di�erent types of solutions of equations (4). They are: the weak entropy solutions,
the solutions to the kinetic problem and the measure-valued solutions. The de�nitions below are
modi�cations of standard ones due to occurrence of the multifunction in (4).

3.1 The weak entropy solutions

The �rst type of solutions are weak solutions that ful�l additional inequality for all entropy-�ux
pairs. In the theory of scalar conservation laws the additional entropy inequality is required to
obtain uniqueness of weak solutions. In our situation, due to the appearance of a multifunction,
it is not clear if we get uniqueness even after considering weak entropy solutions. However, there
is a hope that after assuming additional time regularity we obtain uniqueness. For example in
[12], with this assumption, the authors proved the uniqueness of weak entropy solutions in the
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case of a modi�cation of the Savage - Hutter model with nonconstant density.

Now let us recall the de�nition of entropy-�ux pair.

De�nition 3.1 Let η = η(u1, u2), q = q(u1, u2) be scalar functions in C1(Ω) such that:

∇(u1,u2)η(u1, u2) · ∇(u1,u2)F (u1, u2) = ∇(u1,u2)q(u1, u2).

Then functions η, q are called entropy-�ux pair. Moreover η is called the convex entropy if

function η is convex.

Note that we de�ne entropy-�ux pair in the variables (u1, u2) which are connected with the height
and the momentum of granulat. The problem is when u1 = 0, where the vacuum appears. That
is why instead of full family of entropies we use the family of the weak entropies (see [16]). In
our case we require that for u1 → 0 the entropy is going to zero.

De�nition 3.2 The pair (u,G) such that: u ∈ L∞([0, T )× R;R+ × R),
G(t, x) ∈ L∞

loc([0, T ) × R;R2), and G(t, x) ∈ Ḡ(u(t, x), x) for almost all (t, x) ∈ [0, T ) × R, is
called the weak entropy solution of equations (4) with initial data u0 ∈ C0(R;R+×R) if and only

if u is a weak solution, it means:∫
R×[0,T )

(u(t, x) · ∂
∂t
ψ(t, x) + F (u(t, x)) · ∂

∂x
ψ(t, x) +G(t, x) · ψ(t, x))dtdx =

∫
R
u0(x) · ψ(0, x)dx

for all test functions ψ ∈ C1
0([0, T )× R;R2), and the entropy inequality holds:∫

R×[0,T )
(η(u(t, x))

∂

∂t
Φ(t, x) + q(u(x, t))

∂

∂x
Φ(t, x) +∇uη(u(t, x)) ·G(t, x)Φ(t, x))dtdx

≥
∫
R
η(u0(x)Φ(0, x))dx

for all nonnegative test functions: Φ ∈ C1
0([0, T ) × R;R2) and for all convex entropy-�ux pairs.

We also require that ∇uη(u) ∈ L∞([0, T )×R;R2), η(· , · ) is C2 function for (u1, u2) ∈ (0,∞)×R.
We extend the entropy by putting η(0, · ) = 0.

3.2 Kinetic formulation

The next type of solutions is related to the kinetic problem.

De�nition 3.3 The triple (h, v,G) such that: (h, v) ∈ L∞([0, T )× R;R+ × R),
G(t, x) ∈ L∞

loc([0, T )×R;R2), and G(t, x) ∈ Ḡ(t, x) for almost all (t, x) ∈ [0, T )×R, is the kinetic
solution of equations (4) with initial data (h0, v0) ∈ C0(R;R+ × R) if and only if the following

conditions hold:

• (h, v) has a �nite energy, it is: for all t ≥ 0, h(t) is nonnegative and h, ηE ∈ L∞(R+;L1(R)),
where ηE is the entropy given by: ηE = 1

2(h
2 + hv2);

• there exists a bounded, non positive measure m(t, x, ξ) such that for (h, v) the following

equation:

∂

∂t
χ(h, v − ξ) +

1

2

∂

∂x
(ξ + v)χ(h, v − ξ)−∇(h,hv)χ(h, v − ξ) ·G(t, x) = ∂2

∂ξ2
m(t, x, ξ) (5)

holds in D′(R+,R2). The function χ is given by:

χ(h, v) = α(4h− v2)
1
2
+, for α = 1

4(
∫
R(1− ω2)

1
2
+dω)

−1;
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• the measure m is bounded by:

−
∫ T

0

∫
R×R

m(t, x, ξ)dξdxdt ≤
∫
R
ηE(h

0, v0)dx.

3.3 The measure-valued solutions

The last case concerns the measure-valued solutions. Usually they are introduced as the limit to
viscous approximation. In our case the problem appears in the point where right-hand side is not
continuous (this point we treat as multivalued). That is why after using Young Measure Theorem
to viscous approximation we obtain only the existence of limit, but we cannot characterise it.
However it is possible to treat the multifunction as the monotone graph and transform it to a
continuous function. Then it is possible to make the limit passage and obtain the existence of
solution (and characterisation of it) but in the language of this transformation. That point of
view was used in [10] in the case of two dimensional situation. We adapt their de�nition to
one-dimensional situation.

De�nition 3.4 The family of probabilistic measures: µt,x ∈ P([0, T ) × R,R+ × R) is called to

be the measure-valued solution of equations (4) with initial data u0 ∈ C0(R;R+ × R) if following
equations holds ∫

R×[0,T )
(h̄
∂

∂t
ψ1 + m̄

∂

∂x
ψ1)dtdx =

∫
R
u01ψ1(0)dx,∫

[0,T )×R
m̄
∂

∂t
ψ2 + (ē+

1

2
p̄)
∂

∂x
ψ2 + G̃ψ2dxdt =

∫
R
u02ψ2(0)dx,

for all test functions: ψ ∈ C1
0([0, T )× R;R2).

Moreover the entropy inequality:∫
R×[0,T )

(η̄
∂

∂t
Φ(t, x) + q̄

∂

∂x
Φ(t, x) + k̄Φ(t, x))dtdx ≥

∫
R
η(u0(x)Φ(0, x))dx,

holds for all nonnegative test functions: Φ ∈ C1
0([0, T ) × R;R2) and for all convex entropy-�ux

pairs.

Where:

h̄ =
∫
R+×R λ1dµt,x(λ),

p̄ =
∫
R+×R λ

2
1dµt,x(λ),

m̄ =
∫
R+×R

√
λ1(−ḡ + Id)−1(x, λ2)dµt,x(λ),

ē =
∫
R+×R((−ḡ + Id)−1(x, λ2))

2dµt,x(λ),

G̃ =
∫
R+×R λ1ḡ ◦ (−ḡ + Id)−1(x, λ2)dµt,x(λ),

η̄ =
∫
R+×R η(λ1,

√
λ1(−ḡ + Id)−1(x, λ2))dµt,x(λ),

q̄ =
∫
R+×R q(λ1,

√
λ1(−ḡ + Id)−1(x, λ2))dµt,x(λ),

k̄ =
∫
R+×R

∂
∂z2

η(z1, z2)|(λ1,
√
λ1(−ḡ+Id)−1(x,λ2))

λ1ḡ ◦ (−ḡ + Id)−1(x, λ2)dµt,x(λ),

for almost all (t, x) ∈ [0, T )× R;

4 The weak entropy solutions and kinetic formulation

Firstly we characterize the family of weak entropies. As the Theorem 4.1 is similar to the
Perthame's result in [16] for the Euler equations describing gas dynamics, we omit that proof.
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After changing variables from (u1, u2) into (h, v), the entropy obeys the wave equation
∂2

∂h2 η − 1
h

∂2

∂v2
η = 0. Moreover the corresponding �ux term is given by: ∂

∂hq = v ∂
∂hη + ∂

∂vη, or
equivalently by: ∂

∂v q = h ∂
∂hη + v ∂

∂vη.

De�nition 4.1 The entropy that ful�l:
∂2

∂h2 η − 1
h

∂2

∂v2
η = 0, h ≥ 0, v ∈ R,

η(h = 0, v) = 0,

∂
∂hη(h = 0, v) = b(v),

(6)

is called as a weak entropy.

The Theorem 4.1 like in [16] characterizes the family of weak entropies.

Theorem 4.1 Let us consider problem (6). Then:

• the fundamental solution is: χ(h, v) = α(4h− v2)
1
2
+, for α = 1

4(
∫
R(1− ω2)

1
2
+dω)

−1;

• the solution of (6) is given by:

η(h, v) =

∫
R
b(ξ)χ(h, v − ξ)dξ; (7)

• the corresponding �ux term is:

q(h, v) =
1

2

∫
R
(ξ + v)b(ξ)χ(h, v − ξ)dξ; (8)

• η is convex (in variables (u1, u2)) if and only if b is convex.

Remark 4.1 After choosing b(v) = v2

2 we obtain entropy of energy:

ηE =
1

2
(hv2 + h2),

and corresponding �ux term:

qE = v(
1

2
hv2 + h2).

We show that weak entropy solutions and solutions of kinetic problem are equivalent. The proof
is based on the proof for kinetic problem to the Euler model of gas motion (see [16]).

Theorem 4.2 The pair (h, v) ∈ L∞([0, T )×R;R+ ×R) is a solution of the kinetic problem (see

Def. 3.2) if and only if the pair (u1, u2) = (h, hv), possess the �nite energy and is a weak entropy

solution (see Def. 3.3).

Proof.
⇐
We assume that the pair (u1, u2) = (h, hv), of �nite energy is a weak entropy solution. Let m be
a distribution de�ned as:

∂2

∂ξ2
m(t, x, ξ) =

∂

∂t
χ(h, v − ξ) +

1

2

∂

∂x
(ξ + v)χ(h, v − ξ)−∇(h,hv)χ(h, v − ξ) ·G(t, x),
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in D′(R+,R2). We use test functions in the shape b(ξ)ψ(t, x). That is why we can test this
equation by convex function b(ξ). We obtain:∫
R
b(ξ)

∂

∂t
χ(h, v − ξ)dξ +

∫
R

1

2

∂

∂x
(ξ + v)b(ξ)χ(h, v − ξ)dξ −

∫
R
∇(h,hv)(b(ξ)χ(h, v − ξ)) ·G(t, x)dξ

=

∫
R
b(ξ)

∂2

∂ξ2
m(t, x, ξ)dξ.

And we integrate it by parts:

∂

∂t

∫
R
b(ξ)χ(h, v − ξ)dξ +

∂

∂x

∫
R

1

2
(ξ + v)b(ξ)χ(h, v − ξ)dξ −∇(h,hv)

∫
R
b(ξ)χ(h, v − ξ)dξ ·G(t, x)

=

∫
R

∂2

∂ξ2
b(ξ)m(t, x, ξ)dξ.

The entropy-�ux pair is given by equations (7) and (8). That is why we obtain:

∂

∂t
η +

∂

∂x
q −∇(h,hv)η ·G =

∫
R

∂2

∂ξ2
b(ξ)m(t, x, ξ)dξ.

After changing variables: (u1, u2) = (h, hv), we have:

∂

∂t
η +

∂

∂x
q −∇(h,hv)η ·G =

∫
R

∂2

∂ξ2
b(ξ)m(t, x, ξ)dξ.

From Theorem 4.1 we know that η is a convex entropy in variables (u1, u2) i� b is a convex
function. As u is a weak entropy solution then the entropy inequality holds for all convex entropy-
�ux pairs, what implies the following inequality:∫

R

∂2

∂ξ2
b(ξ)m(t, x, ξ)dξ =

∂

∂t
η +

∂

∂x
q −∇uη ·G ≤ 0.

The fact that ∂2

∂ξ2
b(ξ) ≥ 0, implies that m is a nonpositive measure.

It remains to show that m is bounded.
We choose the special function b(ξ) = 1

2ξ
2, which lead us to the entropy of energy, it is ηE =

1
2(h

2 + hv2) (see Remark 4.1). We obtain:

∂

∂t
ηE +

∂

∂x
qE −∇(h,hv)ηE ·G =

∫
R

∂2

∂ξ2
b(ξ)m(t, x, ξ)dξ.

We test the equation by ψ(t, x) = ϕ(t)ωR(x), where ωR(x) = ω( xR) and ω ∈ D(R) has support in
(−2, 2), and in (−1, 1) is equal to one. We obtain:

−
∫ T

0

∫
R×R

m(t, x, ξ)ψ(t)ωR(x)dξdxdt

=

∫ T

0

∫
R
∇(h,hv)ηE ·Gψ(t)ωR(x)dxdt−

∫ T

0

∫
R

∂

∂t
ηEψ(t)ωR(x)dxdt−

∫ T

0

∫
R

∂

∂x
qEψ(t)ωR(x)dxdt

=

∫ T

0

∫
R
∇(h,hv)ηE ·Gψ(t)ωR(x)dxdt−

∫ T

0

∫
R

∂

∂t
ηEψ(t)ωR(x)dxdt+

∫ T

0

∫
R
qEψ(t)

∂

∂x
ωR(x)dxdt

=

∫ T

0

∫
R
∇(h,hv)ηE ·Gψ(t)ωR(x)dxdt−

∫ T

0

∫
R

∂

∂t
ηEψ(t)ωR(x)dxdt+

1

R

∫ T

0

∫
R
qEψ(t)

∂

∂x
ω(x)dxdt.
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Remembering that (h, hv) has �nite energy, it means that for all t ≥ 0 holds: h(t) ≥ 0 and
h, ηE ∈ L∞(R+;L1(R)). What is more, ∇(h,hv)ηE ·G = hvḡ(v, x) ≤ 0, and q is bounded. Going
with R to in�nity we obtain:

−
∫ T

0

∫
R×R

m(t, x, ξ)ψ(t)dξdxdt ≤ −
∫ T

0

∫
R

∂

∂t
ηEψ(t)dxdt,

and:

−
∫ T

0

∫
R×R

m(t, x, ξ)dξdxdt ≤
∫
R
ηE(h

0, v0)dx−
∫
R
ηE(h(T, x), v(T, x))dx ≤

∫
R
ηE(h

0, v0)dx.

It shows that measure m is bounded.
⇒
Now we assume that the pair (h, v) is a solution of kinetic problem.
Again we test the equation:

∂2

∂ξ2
m(t, x, ξ) =

∂

∂t
χ(h, v − ξ) +

1

2

∂

∂x
(ξ + v)χ(h, v − ξ)−∇(h,hv)χ(h, v − ξ) ·G(t, x),

by a test function b(ξ)ψ(t, x), where b is a convex function, and we obtain:

∂

∂t
η +

∂

∂x
q −∇uη ·G =

∫
R

∂2

∂ξ2
b(ξ)m(t, x, ξ)dξ.

From Theorem 4.1 we know that (η, q) is a convex entropy-�ux pair. Using the fact that m is a
nonpositive measure we obtain the entropy inequality:

0 ≥ ∂

∂t
η +

∂

∂x
q −∇uη ·G,

that holds for every entropy such that ∇uη(u) ∈ L∞([0, T )× R;R2),
η(· , · ) is in C2 for (u1, u2) ∈ (0,∞)× R and η(0, · ) = 0.
Taking η = u1 and �ux term q = u2 we obtain following inequality:∫

R×[0,T )
(u1(t, x)

∂

∂t
Φ(t, x) + u2(x, t)

∂

∂x
Φ(t, x))dtdx ≥

∫
R
η(u0(x)Φ(0, x))dx.

On the other hand, taking η = −u1 we obtain the opposite inequality. Summing up, we obtained
the �rst equation of the weak formulation.

To receive the other equation we choose η = u2 and the corresponding �ux term q = 1
2u

2
1 +

u2
2

u1
,

we obtain: ∫
R×[0,T )

(u2
∂

∂t
Φ+ (

1

2
u21 +

u22
u1

)
∂

∂x
Φ+G2Φ)dtdx ≥

∫
R
η(u0(x)Φ(0, x))dx.

The opposite inequality we obtain after choosing η = −u2.
We proved that weak entropy solutions are equivalent to the solutions of kinetic formulation.
�
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5 Measure-valued and weak entropy solutions

In this section we aim at proving that an entropy solution of (4) can be de�ned by a measure-
valued solution. In the standard case the issue reduces to show that considered family of measures
is indeed given by the Dirac atoms. However the discontinuity of the function g, describing the
force in the original system (2), causes that representation via atom masses is no longer valid.
In fact, pointwise representation holds for regular region of g, and in points of discontinuity we
have to use language of transformation (−ḡ(·) + Id)−1 (see Def. 3.4).
Firstly, we look closer at this transformation then we de�ne the family of measures and using it
we show how to obtain weak entropy solutions.

For the sake of simplicity we assume that our hill is �at of uniform base. Under this as-
sumption multifunction ḡ is given by: ḡ = −sgnM(

√
hv). Let us observe the multifunction:

(−ḡ(·) + Id)(
√
hv) = sgnM(

√
hv) +

√
hv, and the inverse mapping which is a function given by:

(−ḡ(·) + Id)−1(y) =

{
y − sgnM(y) |y| ≥ 1,
0 y ∈ (−1, 1).

Moreover functions (−ḡ(·) + Id)−1 and:

ḡ ◦ (−ḡ + Id)−1(y) =

{
−sgnM(y) |y| > 1,
−y y ∈ [−1, 1],

(9)

are continuous. To show this, it is enough to notice that Id = −ḡ◦(−ḡ+Id)−1+Id◦(−ḡ+Id)−1.

Now we de�ne the measure µ that leads us from measure-valued solutions to weak entropy ones.
We construct it by using the Dirac delta and the transformation (−ḡ(·) + Id)−1. We obtain the
measure that is the Dirac delta in the points of continuity of right-hand side it is in the points
corresponding to

√
hv ̸= 0.

Let us take measure π̄t,x equal to the Dirac delta: δ(
√
hv)(t,x), it is

π̄t,x(y) =

{
1 y = (

√
hv)(t, x),

0 y ̸= (
√
hv)(t, x).

Using it we de�ne a probabilistic measure πt,x. We require that for all Borel set A, π is given by
the relation: πt,x(A) = π̄t,x((−ḡ(·) + Id)−1(A)). Let us take A = {y} for |y| > 1, then

πt,x({y}) = π̄t,x((−ḡ(·) + Id)−1({y})) = π̄t,x(y − sgnM(y)) =

{
1 y − sgnM(y) = (

√
hv)(t, x)

0 y − sgnM(y) ̸= (
√
hv)(t, x)

and we obtain that the measure πt,x is equal to δ(−ḡ(·)+Id)(
√
hv) in the points where

√
hv ̸= 0.

Now we are ready to de�ne measure µt,x = δh(t,x) ⊗ πt,x that we use in measure-valued for-
mulation to obtain weak entropy solutions.

Theorem 5.1 If the measure µ in measure-valued problem (see Def. 3.4) is de�ned as

µt,x = δh(t,x)⊗πt,x, then solutions to that problem are also weak entropy solutions (see Def. 3.2).
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Proof.
We use the measure µ in measure-valued formulation. It means that we have to use it in each
component of ∫

R×[0,T )
(h̄
∂

∂t
ψ1 + m̄

∂

∂x
ψ1)dtdx =

∫
R
u01ψ1(0)dx,∫

[0,T )×R
m̄
∂

∂t
ψ2 + (ē+

1

2
p̄)
∂

∂x
ψ2 + G̃ψ2dxdt =

∫
R
u02ψ2(0)dx.

Firstly we deal with:

h̄ =

∫
R+×R

λ1dµt,x(λ) =

∫
R+×R

λ1d(δh(t,x) ⊗ πt,x)(λ) = h(t, x)

and

p̄ =

∫
R+×R

λ21dµt,x(λ) =

∫
R+×R

λ21d(δh(t,x) ⊗ πt,x)(λ) = h2(t, x).

The next part is:

m̄ =

∫
R+×R

√
λ1(−ḡ + Id)−1(x, λ2)dµt,x(λ) =

∫
R+×R

√
λ1(−ḡ + Id)−1(x, λ2)d(δh(t,x) ⊗ πt,x)(λ)

=

∫
R+×R

√
λ1λ2d(δh(t,x) ⊗ π̄t,x)(λ) =

∫
R

∫
R+

√
λ1λ2dδh(t,x)dδ(

√
hv)(t,x) = hv

and

ē =

∫
R+×R

((−ḡ + Id)−1(x, λ2))
2dµt,x(λ) =

∫
R+×R

((−ḡ + Id)−1(x, λ2))
2d(δh(t,x) ⊗ πt,x)(λ)

=

∫
R+×R

λ22d(δh(t,x) ⊗ π̄t,x)(λ) = hv2.

The last part is G̃:

G̃ =

∫
R+×R

λ1(ḡ ◦ (−ḡ + Id)−1)(λ2)dµt,x(λ)

=

∫
R+×R

λ1(ḡ ◦ (−ḡ + Id)−1)(λ2)d(δh(t,x) ⊗ πt,x)(λ).

Using the formula (9) we obtain:

G̃ =

{ ∫
R+×R λ1(−sgnM(λ2))d(δh(t,x) ⊗ πt,x)(λ) |λ2| > 1,∫
R+×R λ1(−λ2)d(δh(t,x) ⊗ πt,x)(λ) λ2 ∈ [−1, 1].

In the case when |λ2| > 1, we use the properties of measure and we obtain: G̃ = −hsgnM(
√
hv)

for
√
hv ̸= 0. On the other hand, when |λ2| ≤ 1, we have that

√
hv = 0. We obtain the following

formula: −hsgnM(
√
hv).

In all cases we use the fact that measure π is a probabilistic measure and we use Fubini theorem.
Looking back to the measure-valued formulation, we obtain:∫

R×[0,T )
h̄
∂

∂t
ψ1 + m̄

∂

∂x
ψ1dtdx =

∫
R×[0,T )

h
∂

∂t
ψ1 + hv

∂

∂x
ψ1dtdx =

∫
R
u01ψ1(0)dx,
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∫
[0,T )×R

hv
∂

∂t
ψ2 + (hv2 +

1

2
h2)

∂

∂x
ψ2 + hg̃ψ2dxdt =

∫
R
u02ψ2(0)dx.

After going into variables (u1, u2) = (h, hv) we receive the weak solution for g̃ ∈ ḡ.
It remains to show that entropy inequality holds. To prove that we use inequality∫

R×[0,T )
(η̄
∂

∂t
Φ(t, x) + q̄

∂

∂x
Φ(t, x) + k̄Φ(t, x))dtdx ≥

∫
R
η(u0(x)Φ(0, x))dx

and we deal with: η̄, q̄, k̄ in the similar way as above. After using the measure µt,x = δh(t,x)⊗πt,x,
and changing the variables into (u1, u2), we obtain inequality what gives us weak entropy solu-
tions.
�
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