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Abstract. The paper deals with a scalar conservation law in an arbitrary

dimension d with a discontinuous flux. The flux is supposed to be a discontin-

uous function in the spatial variable x and in an unknown function u. Under
some additional hypothesis on the structure of possible discontinuities, we for-

mulate an appropriate notion of entropy solution and establish its existence
and uniqueness. The framework for proving the existence and uniqueness of

entropy weak solutions is provided by the studies on entropy measure-valued

solutions and may be viewed as a corollary of the uniqueness theorem for
entropy measure-valued solutions.

1. Introduction

We focus on the Cauchy problem for a scalar hyperbolic conservation law

u,t + divFFF(x, u) = 0 in Rd+1
+ ,

u(0, ·) = u0 in Rd,
(1.1)

where Rd+1
+ := (0,∞)×Rd, d denotes an arbitrary spatial dimension, u : Rd+1

+ → R
is an unknown and FFF : Rd × R → Rd is a given flux of the quantity u. In addition
we assume that u vanishes as |x| → ∞. Our main goal in the paper is to identify
a class of fluxes FFF for which we can develop “well-posedness” of the problem (1.1).
Indeed, we not only want to establish the proper notion of solution to (1.1) and
its existence but also its uniqueness in an a priori chosen class. In particular, our
primary motivation is that such class is equivalent to Kružkov entropy solution in
case that FFF is a sufficiently smooth function. For brevity, we recall that for smooth
FFF a weak solution to (1.1) is called the Kružkov entropy solution if it satisfies for

all k ∈ R the following entropy inequality in the distributional sense in Rd+1
+

|u− k|,t + div (sgn(u− k)(FFF(x, u)− FFF(x, k)))

+ sgn(u− k) divFFF(x, k) ≤ 0.
(1.2)
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More generally, it can be shown that (1.2) is equivalent to the following entropy
inequality

E(u),t + E′(u) divx FFF(x, u) + divQQQ(x, u)− divxQQQ(x, u) ≤ 0,(1.3)

where E is an arbitrary smooth convex function (entropy) and QQQ (flux) satisfies

∂uQQQ(x, u) = E′(u)∂uFFF(x, u).

In (1.3) we use

divx FFF(x, u) :=

d∑
i=1

∂FFFi(x, u)

∂xi
divFFF(x, u) :=

d∑
i=1

∂FFFi(x, u)

∂xi
+
∂FFFi(x, u)

∂u

∂u

∂xi
.

Moreover, to simplify the presentation we frequently use the following notations:
Small letters in italics always denote the scalar functions mapping Rd+1

+ , Rd respec-

tively on R, i.e., v(t, x) : Rd+1
+ → R and v(x) : Rd → R. The real function of one

real variable will be always denoted by capital letter, i.e., P : R→ R. On the other
hand vector-valued function of one real variable is denoted by capital bold letter,
i.e., QQQ : R→ Rd. Similarly vector-valued function of (t, x) or x respectively will be

denoted by small bold letter, i.e., v(t, x) : Rd+1
+ → Rd and v(x) : Rd → Rd.

In the very beginning we proposed that we are interested in generalization of the
notion of Kružkov entropy solution to more general class of possible fluxes FFF. For
this purpose we shall follow three recent results and attempt to combine them in
a proper way to develop a unified theory. First fundamental result we refer to is
the paper of Audusse and Perthame [4]. The authors dealt with FFF being possibly
discontinuous with respect to x and proposed for d = 1 the generalized entropy
inequality (1.2), where instead of taking constant k, they considered k being a
function of x such that

(1.4) divFFF(x, k(x)) = 0.

In this case we see that the last term in (1.2), which is not well-defined in case
of non-smooth FFF, vanishes and they showed that for a sufficiently large class of
k’s satisfying (1.4) the uniqueness of solutions to (1.1)–(1.2) can be proved. More
precisely, we recall here under which assumptions one is able to find a rich class of
k’s fulfilling (1.4). In [4] the authors assumed that there exist continuous functions
f, g; f(u)→∞ as |u| → ∞ such that1

FFF(x, u) is Carathéodory,(1.5)

f(u) ≤ |FFF(x, u)| ≤ g(u),(1.6)

FFF(x, u) is for a.a. x locally Lipschitz one to one.(1.7)

Under such conditions the authors were able to prove uniqueness (in a given class)
of the solution to (1.1), that is equivalent to the Kružkov entropy solution in case
that FFF is smooth.

Later Panov [13] generalized the method developed in [4] in the following way.
He assumed that there exists a Carathéodory function θ(x, u) : Rd × R → R that
is for almost all x strictly increasing with respect to u and for which there exist
continuous functions f, g fulfilling f(u)→∞ as |u| → ∞ such that

(1.8) f(u) ≤ |θ(x, u)| ≤ g(u).

1The assumption (1.7) can be slightly generalized, see p. 5 in [4] or the discussion below.
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In addition, the author assumed that FFF is of the form

(1.9) FFF(x, u) = GGG(θ(x, u)),

where GGG ∈ C(R). In this setting it is shown in [13] that it is convenient (and in
case d = 1 also equivalent) to replace (1.1)–(1.2) by the following: Let η(x, v) be
the inverse to θ, i.e., θ(x, η(x, v)) = v, then for smooth fluxes FFF solving (1.1)–(1.2)
is equivalent to finding v such that it solves for all k ∈ R the following system in
the sense of distribution

η(x, v),t + divGGG(v) = 0 in Rd+1
+ ,(1.10)

η(x, v(x, 0)) = u0(x) in Rd,(1.11)

|η(x, v)− η(x, k)|,t+ div(sgn(v − k)(GGG(v)−GGG(k))) ≤ 0, in Rd+1
+ .(1.12)

The proof of existence and uniqueness of solutions is presented only for the dimen-
sion one, i.e., d = 1 in [13]. In addition, the author briefly mentions that the method
can be generalized to the multi-dimensional case provided that the flux satisfies ad-
ditional constrains on the character of continuity. However, such a generalization
for d > 1 is not rigorously proved in [13].

Finally, in [6] the authors considered fluxes being independent of x but discon-
tinuous with respect to u. They showed that for jump continuous fluxes, one can
find nondecreasing U such that FFF ◦ U is continuous and define a notion of entropy
solution that is equivalent to the Kružkov entropy solution for smooth fluxes in the
following way: A function v is an entropy weak solution to (1.10)–(1.12) if it solves
for all k ∈ R the following system in the sense of distribution

U(v),t + divFFF(U(v)) = 0 in Rd+1
+ ,(1.13)

U(v(x, 0)) = u0(x) in Rd,(1.14)

|U(v)− U(k)|,t+ div(sgn(v − k)(FFF(U(v))− FFF(U(k)))) ≤ 0, in Rd+1
+ .(1.15)

The authors showed in [6] that for FFF being jump continuous function that is ad-
ditionally Hölder continuous at 0 there exists just one entropy weak solution to
(1.13)–(1.15).

Thus, our main goal in the paper and also our strategy is to combine methods
developed in [4], [13] and [6] and to develop a theory that covers both possible
discontinuities of a flux, i.e. discontinuities with respect to u and x. We rigorously
treat the multi-dimensional case, which in particular in the dependence in space
variable essentially requires new tools (e.g. kinetic formulation, cf. [8]). Thus,
following above mentioned papers we assume here that FFF(x, u) = GGG(θ(x, u)) where

(A1) GGG(v) is jump continuous2

(A2) θ is a Carathéodory strictly increasing function such that θ(x, 0) = 0 and
there exists a Carathéodory function η(x, v) such that θ(x, η(x, v)) = v for
all v ∈ R and a.a. x ∈ Rd.

(A3) there exist continuous functions h1 and h2 such that for all x ∈ Rd

h1(u) ≤ |θ(x, u)| ≤ h2(u),

and such that for all R > 0 there exists CR so that h2(u) ≤ CRh1(u) for
all |u| ≤ R; in addition we require that lim|u|→∞ h1(u) =∞.

2A function GGG is called jump continuous if for all s ∈ R there exists limt→s± GGG(s) and there is

at most countable set where GGG is not continuous.
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(A4) there exists 1 ≤ p ≤ d
d−1 and constants R∞ > 0 and C∞ > 0 such that for

all x ∈ Rd \BR∞(0)

|GGG(s)|p ≤ C∞|η(x, s)|

Here, the assumption (A1) is inspired by [6]. The assumptions (A2) and (A3)
were introduced in [13]. The requirement that θ(x, 0) = 0 is technical. Although
omitting it is possible, but generates additional terms in the proof of Lemma 2.2,
which decreases the readability of the paper. Finally, the last assumption (A4)
combines the requirements on the behavior of FFF(x, ·) near zero and behavior of
FFF(·, u) near infinity. Indeed, one could alternatively assume that GGG is α−Hölder
continuous in zero with an appropriate exponent α and that |θ(x, u)| ≤ C∞|u| for
|x| → ∞ and/or to introduce other assumptions on the behavior of FFF near ∞ for
u = 0.

Besides the results described above we shall mention various other approaches
to scalar conservation laws including discontinuities of fluxes. According to our
knowledge the case of discontinuity in both variables x and u has not been con-
sidered. All of the studies on fluxes discontinuous in x confine to one-dimensional
case. We recall here an overview paper of Risebro, cf. [16] concerned mostly with
a front tracking method. The author describes various motivations for considering
such problems.

In the works basing upon the classical Kružkov entropies the problem of giving
sense to the last term in the entropy inequality (1.2) arises. Some approaches require
introducing an interface entropy condition, see e.g. [1], which consequently entails
the assumptions on the total variation of the flux function. Another approach is
presented by Bachmann and Vovelle in [5]. The authors use the kinetic formulation
of conservation laws. The very particular form of the flux function is considered.
Both of the mentioned papers concern the one-dimensional setting and continuous
dependence on u.

The separate issue are discontinuities of the flux with respect to the unknown
function u. This topic was studied by Ammar and Wittbold, cf. [3] for the fluxes in-
dependent of x in a multi-dimensional case. The authors postulate the form of equa-
tion similar to the form obtained in [6] after the transformation. The proof bases
upon the comparison principle and the entropy inequality involves semi Kružkov
entropies, namely E(u, k) = (u− k)+.

Among the variety of entropy conditions for the problems with x−discontinuous
fluxes an interesting question arises which of them have a physical meaning. The
classical framework for answering this question is derivation of target equations
from primitive equations. With this strategy in mind, we shall be particularly
interested in the entropy conditions of Audusse and Perthame (and hence also the
ones of Panov), due to the rigorous derivation as a hydrodynamic limit from the
particle system, see [7]. Also, it is important to mention at the very beginning
that the entropy conditions considered here, are equivalent for smooth fluxes to the
Kružkov entropies as will be demonstrated in Section 2.

We organize the paper as follows: Section 2 contains the discussion on relations
between various notions of solutions. The one-dimensional case essentially varies
from a multi-dimensional case, hence we discuss them separately to underline the
differences. Section 3 concerns the existence of entropy measure-valued solutions.
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We define the entropy measure-valued solutions (Definition 3.1) and state the the-
orems on existence and uniqueness of solutions (Theorems 3.1 and 3.2). The cru-
cial tool for these results is the so-called averaged contraction property formulated
in Lemma 3.1. The meaning of uniqueness of entropy measure-valued solutions
requires the discussion on its appropriate interpretation. Two entropy measure-
valued solutions are meant to be unique in the sense specified by (3.25)–(3.26),
more precisely they are unique up to the level sets of the function U . The results
on measure-valued solutions are essential for passing to entropy weak solutions. The
main difference in comparison to the result on x−independent fluxes (cf. [6]) concen-
trates in showing the well-posedness of entropy measure-valued solutions and hence
these steps are described in details. The passage from the level of measure-valued
to weak solutions follows the same lines. We comment on this issue in Section 4,
where the reader can find the definition of entropy weak solutions (Definition 4.1)
and the statement of the theorem (Theorem 4.1).

2. Equivalent notions of entropy solutions

In this section, we define precisely what we mean by the Kružkov entropy solution
to (1.1)–(1.2) or to (1.3) for smooth fluxes FFF and show several equivalent notions to
such a solution for FFF satisfying in addition (A1)–(A3). There is a straightforward
connection between the Kružkov entropy solution and the entropy weak solution in
the meaning of present considerations (see (N4) below) in case of one dimension.
Therefore we treat this situation separately. First, we formulate the main result
of this section and then provide two separate proofs. The first one for dimension
one, that is only the combination of the previous results and the second one for any
dimension that is based on the kinetic formulation.

Lemma 2.1. Let FFF satisfy (A1)–(A3) and assume that GGG, η and θ are smooth.
In addition let U : R→ R be smooth, strictly increasing one-to-one mapping with a
smooth inverse G and let u0 ∈ L∞loc(Rd). Assume that u ∈ L∞loc(Rd+1) be given and
define

v(t, x) := θ(x, u(t, x)),(2.1)

g(t, x) := G(v(t, x)).(2.2)

Then the following statements are equivalent.
(N1) For all k ∈ R and all nonnegative ψ ∈ D(Rd+1) there holds

∫
Rd+1

+

|u(t, x)− k|ψ,t(t, x)− sgn(u(t, x)− k) divFFF(x, k)ψ(t, x) dx dt

+

∫
Rd+1

+

sgn(u(x, t)− k)(FFF(x, u(x, t))− FFF(x, k)) · ∇ψ(x, t) dx dt

+

∫
Rd

|u0(x)− k|ψ(0, x) dx ≥ 0.

(2.3)
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(N2) (Only valid for d = 1). For all kα(x) satisfying F (x, kα(x)) = α and all
nonnegative ψ ∈ D(R2) there holds∫

Rd+1
+

|u(t, x)− kα(x)|ψ,t(t, x) dx dt

+

∫
Rd+1

+

sgn(u(t, x)− k)(FFF(x, u(t, x))− FFF(x, kα(x))) · ∂xψ(t, x) dx dt

+

∫
Rd

|u0(x)− k|ψ(0, x) dx ≥ 0.

(2.4)

(N3) For all k ∈ R and all nonnegative ψ ∈ D(Rd+1) there holds∫
Rd+1

+

|η(x, v(t, x))− η(x, k)|ψ,t(t, x) dx dt

+

∫
Rd+1

+

sgn(v(t, x)− k)(GGG(v(t, x))−GGG(k)) · ∇ψ(t, x) dx dt

+

∫
|u0(x)− η(x, k)|ψ(0, x)dx ≥ 0.

(2.5)

(N4) For all k ∈ R and all nonnegative ψ ∈ D(Rd+1) there holds∫
Rd+1

+

sgn(U(g(t, x))− U(k))(GGG(U(g(t, x)))−GGG(U(k))) · ∇ψ(t, x) dx dt

+

∫
Rd+1

+

|η(x, U(g(t, x)))− η(x, U(k))|ψ,t dx dt

+

∫
Rd

|u0(x)− η(x, U(k))|ψ(0, x) dx ≥ 0.

(2.6)

2.1. One-dimensional case. Here we present the proof of Lemma 2.1 for d = 1.
According to [7, Proposition 3.1] the solution u in the sense of (N1) also satisfies the
entropy inequality with adapted entropies introduced by Audusse and Perthame,
namely (N2). The solutions in the sense of Audusse-Perthame are equivalent to
solutions defined by Panov (N3), which is proved in [13, Theorem 1]. Then showing
the equivalence of (N3) and (N4) presents no difficulties for any dimension d ≥ 1.

Indeed, if for any k we define k̃ := U(k), we can use k̃ in (2.5) and by using the
definition of g we get exactly (2.6). The opposite implication is proved in the same
way since U is one-to-one mapping.

2.2. Multi-dimensional case. Here we give the proof of Lemma 2.1 for the gen-
eral case d > 1. The restriction of Audusse-Perthame solutions to one-dimensional
setting prevents to follow the same lines of the equivalence proof between various
notions of solutions for smooth fluxes in a multi-dimensional case. The problem
of finding a solution to the stationary problem cannot be solved as obviously as
in the one-dimensional case. We proceed here differently, namely we pass from
the Kružkov entropy solutions to the kinetic formulation and then from the kinetic
formulation we conclude the existence of solutions to (N4).

2.2.1. Kinetic formulation. The concept of kinetic formulation for scalar conserva-
tion laws with the flux independent of x was introduced in [11, 12], see also [14, 15].
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The extension for x−dependent fluxes was done in [8]. Define χ : R2 → {1,−1, 0}
as follows

(2.7) χ(z, u) :=

 1 if 0 < z < u,
−1 if u < z < 0,

0 otherwise.

We are interested in the equivalence between Kružkov entropy solutions and kinetic
formulation, which is provided by [8, Theorem 3]. Before recalling this result we
introduce the notation and formulate the assumptions for the regularity of the flux
function. Let a := (a1, . . . , ad+1) be defined as

ai(x, z) :=
∂FFFi(x, z)

∂z
,(2.8)

ad+1(x, z) := − divx FFF(x, z),(2.9)

ad+1(x, 0) := 0 ∀x ∈ Rd.(2.10)

Recall that to provide the existence of a solutions to (1.1) we need the following
assumptions to be satisfied (see [10])

ai ∈ C1(Rd+1), ∂jai ∈ L∞loc(R;L∞(Rd)), 1 ≤ i, j ≤ d+ 1,(2.11)

∃ C > 0 ∀(x, z) ∈ Rd+1, |ai(x, z)| ≤ C(1 + |x|+ |z|), 1 ≤ i ≤ d+ 1,(2.12)

where ∂j := ∂xj
for 1 ≤ j ≤ d and ∂d+1 := ∂z.

Next, the key observation that relates Kružkov entropy solution with the kinetic
formulation is the following.

Theorem 2.1. Let u ∈ C([0,∞);L1(Rd)) ∩ L∞loc((0,∞);L∞(Rd)). Under assump-
tions (2.8)–(2.12), u is an entropy solution to (1.1) if and only if there exists a
nonnegative measure m(t, x, z) such that m((0, T )×Rd+1) <∞ for all T > 0, and
if χ(z, u(t, x)) satisfies the following kinetic equation in the sense of distributions

(2.13)
∂tχ(z, u(t, x)) + divx,z[a(x, z)χ(z, u(t, x))] = ∂zm(t, x, z) in Rd+1

+ × R,

χ(z, u(0, x)) = χ(z, u0(x)) in Rd × R.

Proof. See [8, Theorem 3]. �

Finally, we prove the following statement that is the key tool for proving Lemma 2.1.

Lemma 2.2. Assume that FFF satisfies (A1)–(A3) and that GGG, θ and η are smooth.
A function u is a kinetic solution to (1.1) if and only if there exists a function

v ∈ L∞loc(R
d+1
+ ) given by (2.1) that satisfies (N3).

Having Lemma 2.2 enables proving Lemma 2.1. Indeed, by Theorem 2.1, the
Kružkov and the kinetic solutions are equivalent. Next, by Lemma 2.2 we see
that (N3) and kinetic solution is equivalent and consequently (N1) and (N3) are
equivalent. To show also the equivalence of (N3) and (N4) is then straightforward.

Proof of Lemma 2.2. We only prove here that existence of a kinetic solution im-
plies (N3). The opposite direction can be proved similarly. First note that since
θ(x, 0) = 0 then also η(x, 0) = 0. We begin the proof by changing the variable z
in (2.13). Hence, let w := θ(x, z) (which is equivalent to z = η(x,w)) and define
v(t, x) := θ(x, u(t, x)) (which also implies u = η(x, v)).

Assume that E ∈ C∞(R) and ψ(t, x) ∈ D(Rd+1) are arbitrary. Since θ(x, z) is
smooth we know that E′(θ(x, z)) is smooth as well. Denote R := ‖u‖L∞(supp ψ)
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and let ζ ∈ D(R) be such that ζ ≡ 1 in [−R,R]. Finally, we set ϕ(t, x, z) :=
E′(θ(x, z))ζ(z)ψ(t, x) as a test function in (2.13) (note that it is a smooth compactly
supported function) to obtain the following identity∫

Rd+1
+ ×R

χ(z, u(t, x))ϕ,t(t, x, z) dz dx dt

+

∫
Rd+1

+ ×R
χ(z, u(t, x))a(x, z) · ∇x,zϕ(t, x, z) dz dx dt

=

∫
Rd+1

+ ×R
∂zϕ(t, x, z) dm(t, x, z)−

∫
R×Rd

χ(z, u0(x))ϕ(0, x, z) dz dx

(2.14)

We shall evaluate all the terms appearing in (2.14). For the first term, we use the
definition of χ and ϕ, the Fubini theorem, the definition of ζ and the definition of
v(t, x) to get∫

Rd+1
+ ×R

χ(z, u(t, x))ϕ,t(t, x, z) dz dx dt

=

∫
Rd+1

+

∫ u(t,x)

0

E′(θ(x, z))ζ(z)ψ,t(t, x) dz dx dt

=

∫
Rd+1

+

∫ u(t,x)

0

E′(θ(x, z))ψ,t(t, x) dz dx dt

=

∫
Rd+1

+

∫ v(t,x)

0

E′(w)∂wη(x,w)ψ,t(t, x) dw dx dt

=

∫
Rd+1

+

(Q1(x, v(t, x))−Q1(x, 0))ψ,t(t, x) dx dt

=

∫
Rd+1

+

(Q1(x, v(t, x))ψ,t(t, x) dx dt+

∫
Rd

Q1(x, 0))ψ(0, x)dx,

(2.15)

where we defined Q1 by the relation

(2.16) ∂wQ1(x,w) = E′(w)∂wη(x,w).

With the last term on the right hand side of (2.14) we proceed similarly to get∫
R×Rd

χ(z, u0(x))ϕ(0, x, z) dz dx

=

∫
Rd

∫ u0(x)

0

E′(θ(x, z))ψ(0, x) dz dx

=

∫
Rd

(Q1(x, v0(x))−Q1(x, 0))ψ(0, x) dx,

(2.17)

where we defined

v0(x) := θ(x, u0(x)).
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To evaluate the second term on the left hand side of (2.14), we use (2.8)–(2.9), the
fact that FFF(x, z) = GGG(θ(x, z)) and the definition of ϕ to observe

a · ∇x,zϕ =

d∑
i=1

∂zGGGi(θ(x, z))∂xi
(E′(θ(x, z))ψ(t, x))ζ(z)

− ∂z(E′(θ(x, z))ζ(z))ψ(t, x)

d∑
i=1

∂xi
GGGi(θ(x, z))

=

d∑
i=1

GGG′i(θ(x, z))∂zθ(x, z)E
′(θ(x, z))∂xi

ψ(t, x)ζ(z)

− ψ(t, x)∂zζ(z)GGG′i(θ(x, z)
d∑
i=1

∂xi
θ(x, z).

Thus, using this expression in (2.14), using the Fubini theorem and the definition
of ζ we find that∫

Rd+1
+ ×R

χ(z, u(t, x))a(x, z) · ∇x,zϕ(t, x, z) dz dx dt

=

∫
Rd+1

+

∫ u(t,x)

0

d∑
i=1

GGG′i(θ(x, z))∂zθ(x, z)E
′(θ(x, z))∂xiψ(t, x)ζ(z) dz dx dt

−
∫
Rd+1

+

∫ u(t,x)

0

ψ(t, x)∂zζ(z)GGG′i(θ(x, z)
d∑
i=1

∂xi
θ(x, z) dz dx dt

=

∫
Rd+1

+

∫ u(t,x)

0

GGG′(θ(x, z))E′(θ(x, z)) · ∇ψ(t, x)∂zθ(x, z) dz dx dt

=

∫
Rd+1

+

∫ v(t,x)

0

GGG′(w)E′(w) · ∇ψ(t, x) dw dx dt

=

∫
Rd+1

+

QQQ2(v(t, x)) · ∇ψ(t, x) dx dt,

(2.18)

where QQQ2 is defined through the relation

(2.19) QQQ′2(w) = GGG′(w)E′(w).

Finally, for the last term on the right hand side of (2.14), we have∫
Rd+1

+ ×R
∂zϕ(t, x, z) dm(t, x, z)

=

∫
Rd+1

+ ×R
(ζ(z)E′′(θ(x, z))∂zθ(x, z) + E′(θ(x, z))∂zζ(z))ψ(t, x) dm(t, x, z)

=

∫
Rd+1

+ ×R
E′′(θ(x, z))∂zθ(x, z) dm(t, x, z)

(2.20)

where the last equality follows from the fact that the measure m is supported in
the set Rd+1

+ × [−R,R] (cf. [8, relation (2), p. 480]). Therefore, substituting (2.15),
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(2.17), (2.18) and (2.20) into (2.14), we deduce that∫
Rd+1

+

(Q1(x, v(t, x))ψ,t(t, x) dx dt+

∫
Rd+1

+

QQQ2(v(t, x)) · ∇ψ(t, x) dx dt

= −
∫
Rd

Q1(x, v0(x))ψ(0, x) dx+

∫
Rd+1

+ ×R
E′′(θ(x, z))∂zθ(x, z) dm(t, x, z)

(2.21)

for all ψ ∈ D(Rd+1), all E ∈ C∞(R) with Q1 and QQQ2 defined in (2.16), (2.19)
respectively.

Since the measure m is supported on Rd+1
+ × [−R,R], then only the behaviour of

the entropy function on the set [−R,R] influences the entropy inequality. Moreover,
an arbitrary convex smooth function can be restricted to the set [−R,R] and then
extended to a smooth function having derivative with compact support in R. Hence,
we obtain for all smooth convex E that∫

Rd+1
+

(Q1(x, v(t, x))ψ,t(t, x) dx dt+

∫
Rd+1

+

QQQ2(v(t, x)) · ∇ψ(t, x) dx dt

≥ −
∫
Rd

Q1(x, v0(x))ψ(0, x) dx.

(2.22)

But since v is locally bounded, (2.22) holds for all convex E ∈ C(R). Conse-
quently, a special choice E(w) := |w − k| then leads to (2.5). Thus, the proof is
complete. �

3. Entropy measure-valued solutions

In this section, inspired by Lemma 2.1 we shall be concerned with entropy
measure-valued solutions to (1.1) in case of non-smooth FFF. More precisely, we
focus here on fluxes FFF that satisfy (A1)–(A4). Hence following [6], we assume
that GGG ∈ L∞loc(R)d is a jump continuous functions. Then we denote by zk ∈ R,
k ∈ N the points such that lims→(zk)+ GGG(s) 6= lims→(zk)− GGG(s). Recall that the set
of such points is countable. Next we construct a multi-valued mapping G by filling
the jumps of GGG with intervals connecting lims→(zk)+ GGG(s) and lims→(zk)− GGG(s). We
remark that there is a variety of ways to fill up the jumps by more general curves.
For such G we find functions U and AAA (not necessarily uniquely), such that G can
be prescribed as the composition AAA ◦U−1, where U−1 is a maximal monotone ope-
rator, everywhere defined and possibly multi-valued3. To begin with, we set the
properties of functions U and AAA and then propose how to construct these functions.
Hence, let U and AAA satisfy the following conditions:

• the function U ∈ C(R) is nondecreasing and lim
s→±∞

U(s) = ±∞,

• let αk := inf
α; U(α)=zk

α, βk := sup
β; U(β)=zk

β,

then for all k ∈ N there holds αk < βk < αk+1,

• the function U is constant on [αk, βk] and strictly increasing

on (βk, αk+1) for all k ∈ N,

• the function AAA ∈ C(R)d satisfies AAA(s) ∈ GGG(U(s)),

• the function AAA is linear on [αk, βk] for all k ∈ N.

(3.1)

3Our starting point can also be the problem where jump continuous function would be under-
stood in a generalized sense, namely as a multi-valued mapping G.
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Note that if U and AAA satisfy (3.1) then necessarily

AAA(s) =


GGG(U(s)) for s ∈ (βk, αk+1),

GGG+(zk)−GGG−(zk)

βk − αk
(s− αk) +GGG−(zk) for s ∈ [αk, βk],

(3.2)

where GGG±(zk) := lims→(zk)± GGG(s).
There are many ways how to construct U and AAA such that (3.1) holds. Since

according to Theorem 3.1 the solution will not depend on the choice of U , we
introduce here one possible choice, that shall also be used in the proof of the
existence theorem. First, we define

αk = zk +
∑

n; zn<zk

1

n2
and βk = zk +

∑
n;zn≤zk

1

n2

and define Ū as

(3.3) Ū(g) =


g −

∑
k:zk<g

1

k2
if g /∈ (αm, βm) for all m ∈ N,

zk −
∑

n:zn<zk

1

n2
otherwise.

To normalize U to be zero at zero we set

(3.4) U(s) := Ū(s)− Ū(0).

It is an obvious observation that the function U is continuous, nondecreasing and
ImU(R) = R. Moreover, having U we can immediately find AAA such that (3.1) holds.

Then we define an entropy measure-valued solution to (1.1). If no assumption
on smoothness of FFF and GGG is added, then in the identities (N1) and (N2) there
appears a discontinuous function (discontinuous with respect to u) FFF and/or GGG.
While in (N4) we can identify GGG ◦U with AAA from (3.1) that is still continuous and
we can define a proper notion of measure-valued solution corresponding to (N4)
that is however in case of smooth fluxes equivalent to the standard notion of entropy
measure-valued solution to (1.1), see e.g. [9, 17]. Moreover, we introduce a notion
of a local entropy measure-valued solution, i.e., we do not prescribe any initial data
and any behavior for |x| → ∞. These conditions will be specified in the existence
theorem under the additional assumption on the flux, i.e. (A4).

Definition 3.1. Let GGG satisfy (A1)–(A3) and assume that U and AAA fulfill (3.1).

We say that a Young measure ν : Rd+1
+ → Prob(R) is a local entropy measure valued

solution to (1.1) if there exists R(t, x) ∈ L∞loc(R
d+1
+ ) such that

supp ν(t,x) ⊂ [−R(t, x), R(t, x)] for a.a. (t, x) ∈ Rd+1
+(3.5)

and if for all µ ∈ R and all nonnegative ϕ ∈ D(Rd+1
+ ) there holds∫

Rd+1
+

〈|η(x, U(λ))− η(x, U(µ))|, ν(t,x)(λ)〉ϕ,t(t, x) dx dt

+

∫
Rd+1

+

〈(AAA(λ)−AAA(µ)) sgn(λ− µ), ν(t,x)(λ)〉 · ∇ϕ(t, x) dx dt ≥ 0.

(3.6)
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The key observation of the paper, on which all results presented here heavily
rely, is the averaged contraction property, which is also the standard property for
classical results with smooth fluxes FFF.

Lemma 3.1. Let GGG satisfy (A1)–(A3) and let (AAA1, U1), (AAA2, U2) be two different
couples satisfying (3.1). Assume that ν and σ are two local entropy measure-valued
solutions to (1.1) corresponding to (AAA1, U1), (AAA2, U2) respectively. Then∫

Rd+1
+

〈|η(x, U1(λ))− η(x, U2(µ))|, ν(t,x)(λ)⊗ σ(t,x)(µ)〉ψ,t(t, x) dx dt

+

∫
Rd+1

+

〈QQQ(λ, µ), ν(t,x)(λ)⊗ σ(t,x)(µ)〉 · ∇ψ(t, x) dx dt ≥ 0

(3.7)

for all nonnegative ψ ∈ D(Rd+1
+ ). Here, we defined QQQ(λ, µ) through

QQQ(λ, µ) :=


(AAA1(λ)−AAA2(µ)) sgn

(
λ− α1

k

β1
k − α1

k

− µ− α2
k

β2
k − α2

k

)
if there is k such that λ ∈ [α1

k, β
1
k], µ ∈ [α2

k, β
2
k],

(AAA1(λ)−AAA2(µ)) sgn(U1(λ)− U2(µ)) otherwise.

(3.8)

The numbers αik, β
i
k, i = 1, 2 are defined in (3.1) correspond to U1, U2 respectively.

Proof. However the proof is similar to the one given in [6] and based on the idea of
regularization of Young measures developed in [9, 17], but the possibly discontinu-
ous dependence in x of the function η involves new difficulties. The main difference
of the proof consists in using the smoothing kernel in the product form and then
passing to the limit separately, first with the parameter of regularization with re-
spect to x and then with the one with respect to t. It motivates us to conduct
the whole proof rigorously in order to avoid any unclarity. Let ω ∈ D(−1, 1) be a

regularizing kernel, i.e., ω(x) = ω(−x) and
∫ 1

−1
ω(x) dx = 1. Then, for any γ > 0,

we define

ωγ1 (t) := γ−1ω(t/γ) for all t ∈ R,

ωγ2 (x) := γ−dω(x1/γ) · . . . · ω(xd/γ) for all x = (x1, . . . , xd) ∈ Rd.

For arbitrary ε, δ > 0 we set ωδ,ε(t, x) := ωδ1(t) · ωε2(x). Notice that for any
Young measure ν ∈ L∞w ([0, T ] × Rd;M(R)) there exists a Young measure νδ ∈
L∞w (Rd; C∞([0, T ];M(R))) with ‖νδ‖L∞w ([0,T ]×Rd;M(R)) ≤ 1 such that for any f ∈
C(R) the following holds4 (ωδ1 ∗ 〈f, ν〉) = 〈f, νδ〉 for almost all t ∈ R. Moreover,
we can interchange the derivative as 〈f, (νδ),t〉 = 〈f, νδ〉,t for all t ∈ R. Similarly,
there exists νε ∈ L∞w ([0, T ]; C∞(Rdloc;M(R))) with ‖νε‖L∞w ([0,T ]×Rd;M(R)) ≤ 1 such

that ωε2 ∗ 〈f, νε〉 = 〈f, νε〉 and 〈f, ∂xi
νε〉 = ∂xi

〈f, νε〉 for all x ∈ Rd, see [9].
We set

ϕ(t, x) := (ψ ∗ ωδ,ε)(t, x) =

∫
Rd+1

+

ψ(τ, y)ωδ,ε(t− τ, y − x) dy dτ

in (3.6) for the measure ν, where nonnegative ψ ∈ D((ε,∞) × Rd) is arbitrary.

Note that ϕ ∈ D(Rd+1
+ ) is nonnegative and therefore such setting is possible. Using

4We extend the measure for t < 0 and t > T by zero.
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regularization (with respect to time), we have for all µ ∈ R∫
Rd+1

+

〈|η(x, U1(λ))− η(x, U1(µ))|, ν(t,x)(λ)〉 (ψ ∗ (ωδ1 · ωε2)),t dx dt

=

∫
Rd+1

+

ωε2 ∗ 〈|η(x, U1(λ))− η(x, U1(µ))|, νδ(t,x)(λ)〉ψ,t dx dt.
(3.9)

Similarly, using the regularization with respect to the spatial direction, we obtain
for all µ ∈ R∫

Rd+1
+

〈(AAA1(λ)−AAA1(µ)) sgn(λ− µ), ν(t,x)(λ)〉 · ∇(ψ ∗ (ωδ1 · ωε2)) dx dt =

=

∫
Rd+1

+

〈(AAA1(λ)−AAA1(µ)) sgn(λ− µ), νδ,ε(t,x)(λ)〉 · ∇ψ dx dt.
(3.10)

Consequently, using (3.9) and (3.10) in (3.6), we deduce that for all µ ∈ R and all
nonnegative ψ ∈ D((ε,∞)× Rd) there holds∫

Rd+1
+

ωε2 ∗ 〈|η(x, U1(λ))− η(x, U1(µ))|, νδ(t,x)(λ)〉ψ,t dx dt

+

∫
Rd+1

+

〈(AAA1(λ)−AAA1(µ)) sgn(λ− µ), νδ,ε(t,x)(λ)〉 · ∇ψ dx dt ≥ 0,

(3.11)

which in particular implies that for all µ̃ ∈ R and all (t, x) ∈ (ε,∞) × Rd there
holds (

ωε2 ∗ 〈|η(x, U1(λ))− η(x, U1(µ̃))|, νδ(t,x)(λ)〉
)
,t

+ div
(
〈(AAA1(λ)−AAA1(µ̃)) sgn(λ− µ̃), νδ,ε(t,x)(λ)〉

)
≤ 0.

(3.12)

Similarly, for a Young measure σ and functions U2 and AAA2, we can deduce that for
any ε > 0, λ̃ ∈ R and all (t, x) ∈ (ε,∞)× Rd we have(

ωε2 ∗ 〈|η(x, U2(λ̃))− η(x, U2(µ))|, σδ(t,x)(µ)〉
)
,t

+ div
(
〈(AAA2(λ̃)−AAA2(µ)) sgn(λ̃− µ), σδ,ε(t,x)(µ)〉

)
≤ 0.

(3.13)

Next, we show that (3.12) implies that for all µ ∈ R the following inequality holds
in a weak sense

(3.14)

(
ωε2 ∗ 〈|η(x, U1(λ))− η(x, U2(µ))|, νδ(t,x)(λ)〉

)
,t

+ div
(
〈QQQ(λ, µ), νδ,ε(t,x)(λ)〉

)
≤ 0

 in (ε,∞)× Rd.

Here, QQQ was defined in (3.8). Thus, we denote by αik, β
i
k the numbers corresponding

to AAAi, Ui from (3.1) with i = 1, 2. Let µ ∈ R be arbitrary and fixed. First, assume
that there is k such that µ ∈ (β2

k, α
2
k+1). From (3.1), it follows that U2 is strictly

increasing on (β2
k, α

2
k+1) and that the same holds for U1 on (β1

k, α
1
k+1). Moreover,

since U2((β2
k, α

2
k+1)) = U1((β1

k, α
1
k+1)), we can find uniquely defined µ̃ ∈ (β1

k, α
1
k+1)

such that U1(µ̃) = U2(µ). Note that µ̃ := (U1)−1(U2(µ)). Using µ̃ in (3.12) we see
that (3.14) follows, provided that for all λ ∈ R there holds

(3.15) (AAA1(λ)−AAA1(µ̃)) sgn(λ− µ̃) = QQQ(λ, µ).
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Since GGG is continuous at U1(µ̃), we see (by using (3.1)) that AAA1(µ̃) = AAA2(µ). More-
over, since U1 is nondecreasing, we have

sgn(λ− µ̃) = sgn(λ− (U1)−1(U2(µ))) = sgn(U1(λ)− U2(µ))

for all λ ∈ R and (3.15) follows. Next, assume that there exists k ∈ N such that
µ ∈ [α2

k, β
2
k]. For such µ we define µ̃ ∈ [α1

k, β
1
k] as

(3.16) µ̃ := (µ− α2
k)
β1
k − α1

k

β2
k − α2

k

+ α1
k.

Then, by using (3.2), it is easy to show that AAA1(µ̃) = AAA2(µ) and that U1(µ̃) = U2(µ).
Moreover, it is evident that for all λ /∈ [α1

k, β
1
k] we have

sgn(λ− µ̃) = sgn(U1(λ)− U2(µ))

and for all λ ∈ [α1
k, β

1
k] we have

sgn(λ− µ̃) = sgn

(
λ− α1

k

β1
k − α1

k

− µ− α2
k

β2
k − α2

k

)
.

Consequently, we see that inserting µ̃ defined in (3.16) into (3.12) we obtain (3.14)
for all µ ∈ R. Similarly, one can observe that for all λ ∈ R, there holds

(3.17)

(
ωε2 ∗ 〈|η(x, U1(λ))− η(x, U2(µ))|, σδ(t,x)(µ)〉

)
,t

+ div
(
〈QQQ(λ, µ), σδ,ε(t,x)(µ)〉

)
≤ 0

 in (ε,∞)× Rd.

In order to deduce (3.7) we combine (3.14) and (3.17). For brevity, set ζ(x, λ, µ) :=
|η(x, U1(λ))−η(x, U2(µ))|. The main effort is directed to the function ζ, because of
its dependence on the variable x. As a consequence of the Fubini theorem it holds
(note that all expressions are well-defined)

div
(
〈QQQ(λ, µ), νδ,ε(t,x)(λ)⊗ σδ,ε(t,x)(µ)〉

)
=
〈

div
(
〈QQQ(λ, µ), νδ,ε(t,x)(λ)〉

)
, σδ,ε(t,x)(µ)

〉
+
〈

div
(
〈QQQ(λ, µ), σδ,ε(t,x)(µ)〉

)
, νδ,ε(t,x)(λ)

〉
.

(3.18)

We apply σδ,ε(t,x) onto (3.14) (note that it is continuous function of µ), similarly we

apply νδ,ε(t,x) onto (3.17). Summing the resulting expressions and using (3.18) we

find that for all (t, x) ∈ (2ε,∞)× Rd there holds

〈ωε2 ∗ 〈ζ(x, λ, µ), νδ(t,x)(λ)〉,t, σδ,ε(t,x)(µ)〉

+ 〈ωε2 ∗ 〈ζ(x, λ, µ), σδ(t,x)(µ)〉,t, νδ,ε(t,x)(λ)〉

+ div
(
〈QQQ(λ, µ), νδ,ε(t,x)(λ)⊗ σδ,ε(t,x)(µ)〉

)
≤ 0.

(3.19)
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Thus, multiplying (3.19) by an arbitrary fixed nonnegative ψ ∈ D((2ε,∞) × Rd),
integrating the result over Rd+1

+ and using integration by parts, we find that

−
∫
Rd+1

+

(〈
ωε2 ∗ 〈ζ(x, λ, µ), νδ(t,x)(λ)〉,t, σδ,ε(t,x)(µ)

〉
+
〈
ωε2 ∗ 〈ζ(x, λ, µ), σδ(t,x)(µ)〉,t, νδ,ε(t,x)(λ)

〉)
ψ dx dt

+

∫
Rd+1

+

〈
QQQ(λ, µ), νδ,ε(t,x)(λ)⊗ σδ,ε(t,x)(µ)

〉
· ∇ψ dx dt ≥ 0.

(3.20)

First, we let ε → 0+. For this purpose we extract a subsequence, that we do not
relabel, such that for any compact set K ⊂ R

ωε2 ∗ 〈ζ, νδ〉,t → 〈ζ, νδ〉,t strongly in L1
loc(R

d+1
+ ; C(K)),

ωε2 ∗ 〈ζ, σδ〉,t → 〈ζ, σδ〉,t strongly in L1
loc(R

d+1
+ ; C(K)),

σδ,ε ⇀∗ σδ weakly∗ in L∞w (Rd+1
+ ; Prob(K)),

νδ,ε ⇀∗ νδ weakly∗ in L∞w (Rd+1
+ ; Prob(K)).

Using these convergence results, we observe from (3.20) that

−
∫
Rd+1

+

〈〈ζ(x, λ, µ), νδ(t,x)(λ)〉,t, σδ(t,x)(µ)〉ψ dx dt

−
∫
Rd+1

+

〈〈ζ(x, λ, µ), σδ(t,x)(µ)〉,t, νδ(t,x)(λ)〉ψ dx dt

+

∫
Rd+1

+

〈QQQ(λ, µ), νδ(t,x)(λ)⊗ σδ(t,x)(µ)〉 · ∇ψ dx dt ≥ 0.

(3.21)

Similarly to (3.18) it is not difficult to observe that

〈ζ, νδ(t,x) ⊗ σ
δ
(t,x)〉,t = 〈〈ζ, νδ(t,x)〉, σ

δ
(t,x)〉,t = 〈ωδ ∗ 〈ζ, ν(t,x)〉, σδ(t,x)〉,t

=
〈

(ωδ ∗ 〈ζ, ν(t,x)〉),t, σδ(t,x)

〉
+
〈

(ωδ ∗ 〈ζ, σ(t,x)〉),t, νδ(t,x)

〉
.

(3.22)

Thus, using (3.21), (3.22) and integrating by parts with respect to t, we find that∫
Rd+1

+

〈ζ(x, λ, µ), νδ(t,x)(λ)⊗ σδ(t,x)(µ)〉ψ,t dx dt

+

∫
Rd+1

+

〈QQQ(λ, µ), νδ(t,x)(λ)⊗ σδ(t,x)(µ)〉 · ∇ψ dx dt ≥ 0.

Finally, letting δ → 0+ we conclude (3.7) by the argument of weak∗ convergence
results for measures νδ and σδ to ν and σ, respectively.

�

In Lemma 3.1 we showed that any two local entropy measure-valued solutions
satisfy the contraction property, which is the main tool for proving uniqueness.
However, in order to get such a result, we have to specify in which sense an initial
condition is attained and what is the behavior of the solution for |x| → ∞. Indeed,
if (possibly) two different solutions have different initial and “boundary” value,
one cannot expect that they are identical. The next theorem provides sufficient
conditions (that are also necessary) that provide the “uniqueness” of a solution.
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Theorem 3.1 (Uniqueness). Let GGG satisfy (A1)–(A4) and let (AAA1, U1), (AAA2, U2)
be two different couples satisfying (3.1). Assume that ν1, ν2 are two local entropy
measure-valued solutions to (1.1) corresponding to (AAA1, U1) and (AAA2, U2) respec-
tively. Moreover, assume that

• There exists u0 ∈ L1
loc(Rd) (initial condition) such that for all compact

K ⊂ Rd the following holds

lim inf
t→0+

∫
K

〈|η(x, U1(λ))− u0(x)|, ν1
(t,x)(λ)〉 dx = 0,

lim inf
t→0+

∫
K

〈|η(x, U2(µ))− u0(x)|, ν2
(t,x)(µ)〉 dx = 0.

(3.23)

• There exists FFF∞ ∈ L1
loc(R

d+1
+ ) (behavior as |x| → ∞) and 1 ≤ p ≤ d

d−1 such
that for any T > 0 the following holds

∫ T

0

(∫
Rd

∣∣∣〈AAA1(λ)− FFF∞(t, x), ν1
(t,x)(λ)〉

∣∣∣p dx) 1
p

dt <∞∫ T

0

(∫
Rd

∣∣∣〈AAA2(µ)− FFF∞(t, x), ν2
(t,x)(µ)〉

∣∣∣p dx) 1
p

dt <∞.

(3.24)

Then for a.a. (t, x) ∈ Rd+1
+ there exists λ0 = λ0(t, x) such that

supp ν1
(t,x) ⊂ {λ; U1(λ) = U1(λ0)},

supp ν2
(t,x) ⊂ {µ; U2(µ) = U1(λ0)}.

(3.25)

In particular, defining u(t, x) :=
∫
R η(x, U1(λ)) dν1

(t,x)(λ), we have for all M ∈ C(R)

and almost all (t, x) ∈ Rd+1
+ that

M(u(t, x)) =

∫
R
M(η(x, U1(λ))) dν1

(t,x)(λ)

=

∫
R
M(η(x, U2(µ))) dν2

(t,x)(µ).

(3.26)

Proof. Here, we again proceed rigorously in order to avoid any doubts about the
correctness of the procedure. Let 0 < ε < t0 < T < ∞ be arbitrary. We define an
affine ψ1 as follows

ψ1(t) :=


0 t ∈ [0, t0 − ε) ∪ [T,∞),

t− t0 + ε

ε
t ∈ (t0 − ε, t0),

T − t
T − t0

t ∈ (t0, T ).

Let ψn2 ∈ D(Rd) be arbitrary such that ‖ψn2 ‖∞ ≤ 1. Then we set ψ(t, x) :=
ψ1(t)ψn2 (x) in (3.7) (it is a possible test function since we can mollify ψ1 and then
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pass to the limit) to deduce that

1

T − t0

∫ T

t0

∫
Rd

〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉ψn2 (x) dx dt

≤ 1

ε

∫ t0

t0−ε

∫
Rd

〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉ψn2 (x) dx dt

+

∫ T

t0−ε

∫
Rd

〈QQQ(λ, µ), ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉 · ∇ψn2 (x)ψ1(t) dx dt

=: I1(ε, t0, n) + I2(ε, t0, T, n).

Assume that suppψn2 ⊂ K, where K is a compact subset of Rd and let ε → 0+.
Then, it is easy to show that

lim
ε→0+

I2(ε, t0, T, n) = I2(t0, T, n),

where

I2(t0, T, n) :=

∫ T

t0

∫
Rd

〈QQQ(λ, µ), ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉 · ∇ψn2 (x)ψ1(t) dx dt

≤
∫ T

0

∫
Rd

〈|QQQ(λ, µ)|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉|∇ψn2 (x)| dx dt,
(3.27)

where we used the Jensen inequality for estimating the term on the right hand side.
By the mean value theorem, we conclude that for almost all t0 ∈ (0, T ) there holds

lim
ε→0+

I1(ε, t0, n) = I1(t0, n),

where

I1(t0, n) :=

∫
Rd

〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t0,x)(λ)⊗ ν2

(t0,x)(µ)〉ψn2 (x) dx

≤
∫
K

〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t0,x)(λ)⊗ ν2

(t0,x)(µ)〉 dx.

We shall now show that I1 tends to zero as t0 → 0. For this purpose we notice
that ν1 and ν2 are for almost all (t, x) ∈ Rd+1

+ probabilistic measures with compact
support and we use the triangle inequality to obtain that for almost all t0 ∈ (0, T )

I1(t0, n) ≤
∫
K

〈|η(x, U1(λ))− u0(x)|+ |η(x, U2(µ))− u0(x)|,

ν1
(t0,x)(λ)⊗ ν2

(t0,x)(µ)
〉
dx

=

∫
K

〈
|η(x, U1(λ))− u0(x)|, ν1

(t0,x)(λ)
〉
dx

+ C(ψn)

∫
K

〈
|η(x, U2(µ))− u0(x)|, ν2

(t0,x)(µ)
〉
dx.

Hence, using the assumption (3.23), we find that

(3.28) lim inf
t0→0+

I1(t0, n) = 0.

Consequently, we first let ε→ 0+ and then t0 → 0+ in (3.7) and with help of (3.28)
and (3.27) we find that for arbitrary ψn2 ∈ D(Rd) such that ‖ψn2 ‖∞ ≤ 1 and any
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T > 0 there holds∫ T

0

∫
Rd

〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉ψn2 (x) dx dt

≤ T
∫ T

0

∫
Rd

〈|QQQ(λ, µ)|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉|∇ψn2 (x)| dx dt.
(3.29)

Using the definition of QQQ and the triangle inequality we observe that for almost all
(t, x) ∈ Rd+1

+

〈|QQQ(λ, µ)|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉 ≤ 〈|AAA1(λ)− FFF∞(t, x)|, ν1
(t,x)(λ)〉

+〈|AAA2(µ)− FFF∞(t, x)|, ν2
(t,x)(µ)〉.

Hence, by (3.24) we conclude that

(3.30) 〈|QQQ(λ, µ)|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉 ∈ L1(0, T ;Lp(Rd)).

Finally, we define a sequence ψn2 ↗ 1 of smooth nonnegative compactly supported
functions as ψn2 (x) := 1 in B(0, n), ψn2 (x) := 0 for x ∈ Rd \ B(0, 2n) such that
|∇ψn2 | ≤ c

n . One immediately observes that∫
Rd

|∇ψn2 |q dx ≤ C for all q ≥ d.

Consequently, we obtain that

(3.31) |∇ψn|⇀∗ 0 weakly∗ in L∞(0, T ;Lq(Rd)) for all q ≥ d.

Hence, using (3.30) and the weak∗ convergence (3.31), we see that the right hand
side of (3.29) tends to 0 as n → ∞. With the monotone convergence theorem we
conclude that∫ T

0

∫
Rd

〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉 dx dt ≤ 0,(3.32)

which implies that for almost all (t, x) ∈ Rd+1
+ we have

(3.33) 〈|η(x, U1(λ))− η(x, U2(µ))|, ν1
(t,x)(λ)⊗ ν2

(t,x)(µ)〉 = 0.

As a conclusion of (3.33) we shall recover relations (3.25). Assume that (t, x)
is such a point for which (3.33) holds and let λ0 ∈ supp ν1

(t,x). Assume there is

µ0 ∈ supp ν2
(t,x) such that U1(λ0) 6= U2(µ0). Consequently, since η is for almost

all x ∈ Rd strictly monotone with respect to the second variable (which is the
consequence of (A2)), we get that η(x, U1(λ0)) 6= η(x, U2(µ0)). Since η is for almost
all x continuous with respect to the second variable (which is the consequence
of being Carathéodory) there surely exist nonnegative H1, H2 ∈ D(R) such that
H1(λ0) = H2(µ0) = 1 and that

suppH1 ⊂ {λ; |η(x, U1(λ))− η(x, U1(λ0))| ≤ 1

4
|η(x, U2(µ0))− η(x, U1(λ0))|},

suppH2 ⊂ {µ; |η(x, U2(µ))− η(x, U2(µ0))| ≤ 1

4
|η(x, U2(µ0))− η(x, U1(λ0))|}.
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Hence, by using the triangle inequality, we get for all (λ, µ) ∈ suppH1 ×H2 that

|η(x, U1(λ))− η(x, U2(µ))| ≥ |η(x, U1(λ0))− η(x, U2(µ0))|
− |η(x, U1(λ))− η(x, U1(λ0))| − |η(x, U2(µ))− η(x, U2(µ2))|

≥ 1

2
|η(x, U1(λ0))− η(x, U2(µ0))| > 0.

Therefore, we obtain

0 <
〈
H1(λ)H2(µ), ν1

(t,x)(λ)⊗ ν2
(t,x)(µ)

〉
=

〈
H1(λ)H2(µ)

|η(x, U1(λ))− η(x, U2(µ))|
|η(x, U1(λ))− η(x, U2(µ))|, ν1

(t,x)(λ)⊗ ν2
(t,x)(µ)

〉
≤ C

〈
|η(x, U1(λ))− η(x, U2(µ))|, ν1

(t,x)(λ)⊗ ν2
(t,x)(µ)

〉
= 0,

which is a contradiction. The relation (3.26) then easily follows from (3.25). �

Theorem 3.2 (Existence). Let u0 ∈ L1(Rd) ∩ L∞(Rd). Let GGG satisfy (A1) –
(A3) and be jump continuous. Then there exists a measure-valued solution ν to
(1.1) in the sense of Definition 3.1. Moreover, this solution satisfies

lim inf
t→0+

∫
K

∫
R
|η(x, U(λ))− u0(x)| dν(t,x)(λ) dx = 0(3.34)

for any compact K ⊂ Rd.
If additionally GGG satisfies (A4), then there exists FFF∞ ∈ L1

loc(R
d+1
+ ) (behavior as

|x| → ∞) and 1 ≤ p ≤ d
d−1 such that for any T > 0 the following holds∫ T

0

(∫
Rd

∣∣〈AAA(λ)− FFF∞(t, x), ν(t,x)(λ)〉
∣∣p dx) 1

p

dt <∞.(3.35)

Proof of Theorem 3.2. For function GGG there exist functions U and AAA as described
in (3.1). We construct an approximative problem such that first, we approximate
U and AAA, and then mollify θ in the x variable. To be more precise, we define

(3.36) Un(s) := U(s) +
s

n
.

Note that Un is strictly increasing function and we denote U−1
n its inverse. For the

purpose of applying Lemma 2.2 and Theorem 2.13 we need to provide that the flux
function is at least Lipschitz, so we find a sequence of smooth functions AAAn such
that for every compact set K ⊂ R
(3.37) AAAn → AAA strongly in C(K)d.

Note that such a construction is always possible due to the continuity of AAA. Finally,
we use a standard mollification procedure and introduce

θ
1
n (x, s) := ω

1
n (x) ∗ θ(x, s),

where ω
1
n is standard mollification kernel of radius 1

n and we denote η
1
n (x, s) the

inverse function to θ
1
n (x, s), i.e., η

1
n (x, θ

1
n (x, s)) = s. Note that the inverse surely

exists since θ is for almost all x strictly increasing with respect to s.
As a first level of approximation one could use the following problem

(3.38)
un,t + divAAAn(U−1

n (θ(x, un))) = 0 in Rd+1
+ ,

un(0, x) = u0(x) in Rd,
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and refer to [13] for the existence of an entropy solution. However, since such
result is proved there rigorously only for d = 1 and not for d > 1, we proceed here
differently (following the ideas introduced in [6]). Thus, our approximative problem
we start with is the following

(3.39)
un,t + divAAAn(U−1

n (θ1/n(x, un))) = 0 in Rd+1
+ ,

un(0, x) = u0(x) in Rd.

Due to the mollification of θ with respect to x, we can recall the results of Kružkov [10],
where the existence of a unique entropy solution is shown.

Our goal now is to let n→∞ in (3.39). Due to the all introduced mollification,

and since θ
1
n (x, 0) = 0, we are now in position when we can apply Lemma 2.1.

Hence, defining

gn(t, x) := U−1
n (θ

1
n (x, u(t, x))),

we see from (2.6) that it satisfies

η
1
n (x, Un(gn)),t + divAAAn(gn) = 0 in Rd+1

+ ,(3.40)

η
1
n (x, Un(gn(0, x))) = u0(x) in Rd,(3.41)

and in addition by Theorem 2.1 and Lemma 2.2 the following entropy inequality
holds

(3.42)

∫
Rd+1

+

sgn(Un(gn(t, x))− Un(k))(AAAn(gn(t, x))−AAAn(k)) · ∇ψ(t, x) dx dt

+

∫
Rd+1

+

|η 1
n (x, Un(gn(t, x)))− η 1

n (x, Un(k))|ψ,t dx dt

+

∫
Rd

|u0(x)− η 1
n (x, Un(k))|ψ(0, x) dx ≥ 0.

for any constant k ∈ R and for all nonnegative ψ ∈ D(Rd+1).
By using a standard comparison argument (see [10] or [4, 13]), we observe that

(3.43) |η 1
n (x, Un(gn(t, x)))| ≤ ‖η 1

n (x, Un(gn(0, x)))‖∞ = ‖u0‖∞ a.e. in Rd+1
+ .

Consequently, since η
1
n (x, 0) = Un(0) = 0 and both functions are strictly increasing,

we see that

(3.44) ‖Un(gn)‖∞ ≤ sup
x∈Rd

θ
1
n (x, ‖u0‖∞) ≤ h2(‖u0‖∞),

where for the second inequality we used (A3). Thus, finally we get

‖gn‖∞ ≤ U−1
n (h2(‖u0‖∞)) ≤ U−1(h2(‖u0‖∞)) ≤ C,(3.45)

where U−1 is understood as a maximal monotone operator. Note that for the
second inequality we used the fact that |U(s)| ≤ |Un(s)| and for the last inequality
we used the fact that U maps any bounded interval onto a bounded interval.

Hence having (3.45), we can find g ∈ L∞(Rd+1
+ ) and a Young measure ν(t,x)

corresponding to a (not relabeled) subsequence {gn}∞n=1, which is for almost all
(t, x) compactly supported in a a ball B(0,min(U−1(h2(R)))), with R := ‖u0‖∞
such that for any continuous f

gn ⇀∗ g weakly∗ in L∞loc(R
d+1
+ ),(3.46)

f(gn) ⇀∗ f weakly∗ in L∞loc(R
d+1
+ ),(3.47)
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where

(3.48) f(t, x) =

∫
R
f(λ) dν(t,x)(λ).

Our goal is to show that the measure ν is an entropy measure valued solution
in the sense of Definition 3.1. First, it directly follows from (3.45) that (3.5) holds.
We let n → ∞ in (3.42). For the first term we use the fact that Un is strictly
monotone and therefore

Mn(ξ) := sgn(Un(ξ)− Un(k))(AAAn(ξ)−AAAn(k)) = sgn(ξ − k)(AAAn(ξ)−AAAn(k)).

Moreover, it follows from (3.37) that for every compact set K ⊂ R

Mn(ξ)→M = sgn(ξ − k)(AAA(ξ)−AAA(k)) strongly in C(K)d.

Consequently, using (3.46) and (3.48) we conclude

Mn(gn) ⇀∗ M weakly∗ in L∞loc(R
d+1
+ ).

M(t, x) =

∫
R

sgn(λ− k)(AAA(λ)−AAA(k))dν(t,x)(λ).
(3.49)

For the second and the the third term of (3.42), we recall the convergence properties

of θ
1
n and η

1
n . Since θ is strictly increasing and continuous in u, then the same

holds for θ
1
n . The inverse function η

1
n is also increasing and continuous with respect

to u. The convergence of convolutions and the monotonicity of θ and θ
1
n provide

that θ
1
n (x, u) converges pointwisely with respect to x and uniformly with respect

to u on a bounded interval [−R,R] to the function θ, see Proposition A.1. More
precisely, we have for all R > 0

(3.50) θ
1
n → θ strongly in L1

loc(Rd; C([−R,R])).

Consequently, by using Proposition A.2, we obtain that the inverse functions η
1
n

have the same convergence properties, namely for all R > 0 there holds

(3.51) η
1
n → η strongly in L1

loc(Rd; C([−R,R])).

Moreover, using the definition of Un we see that for all R > 0

(3.52) Un → U strongly in C([−R,R])).

Consequently, it follows from (3.48), (3.51) and (3.52) that defining ζn(x, r) :=
|η(x, Un(r))− ηn(x, Un(k))|ψ,t, we observe

lim
n→∞

∫
Rd+1

+

ζn(x, gn) dx dt = lim
n→∞

〈ζn, gn〉

=

∫
R+×Rd

∫
R
|η(x, U(λ))− η(x, U(k))|dν(t,x)(λ)ψ,t dx dt

(3.53)

for all ψ ∈ D(Rd+1), where the duality pairing is understood between the spaces
L1(Rd; C((−R,R);R) and L∞w (Rd;M([−R,R])). In the same manner one can also
identify the limit in the last term in (3.42). Hence using all above established
convergence results, we can easily let n → ∞ in (3.42) to obtain (3.6). Note that
in fact, we get a stronger result, since we do not require ψ(0, x) = 0. Moreover, it
also implies (3.34), which can be proved by following the scheme used in [17, proof
of Theorem 3.2].

To finish the proof we need to show that condition (3.35) holds. We shall show
that it holds with FFF∞ ≡ 0. This is due to the assumptions that we made for the
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behavior of function GGG for |x| → ∞, namely (A4). However one may entertain
more refined assumptions where the condition involving a nontrivial function FFF∞
would be essential. Hence, we observe that (A4) also implies that for all x ∈ Rd,
|x| ≥ R∞

|GGG(U(s))|p ≤ C∞|η(x, U(s))|.
By (3.2) the function AAA(s) is either equal to GGG(U(s)) or is linear. In the first case
we obtain that

|AAA(s)|p ≤ C∞|η(x, U(s))|
and in the second case, namely for any sk ∈ [αk, βk] we observe that for r ∈ [0, 1]

|AAA(sk)|p = |rGGG+(zk) + (1− r)GGG−(z)|p ≤ C∞|η(x, zk)| ≤ C∞C(sk)|η(x, U(sk))|,
where C(s) is bounded on bounded intervals. Hence∫ T

0

(∫
Rd

|〈AAA, ν(t,x)〉|p dx
) 1

p dt ≤
∫ T

0

(∫
Rd

〈|AAA|, ν(t,x)〉|p dx
) 1

p

dt

≤
∫ T

0

(∫
Rd\BR∞ (0)

〈|AAA|, ν(t,x)〉|p dx

) 1
p

dt

+

∫ T

0

(∫
BR∞ (0)

〈|AAA|, ν(t,x)〉|p dx

) 1
p

dt

≤ C∞
∫ T

0

(∫
Rd

〈|η(x, U)|, ν(t,x)〉 dx
) 1

p

dt+ C

≤ C∞ lim inf
n→∞

∫ T

0

(∫
Rd

|η(x, Un(gn))| dx
) 1

p

dt+ C,

(3.54)

Next, since θ
1
n (x, s) is a convolution of θ(x, s) with respect to x, then for almost

all x ∈ Rd and all s ∈ R we have

(3.55) inf
x∈Rd

θ(x, s) ≤ θ 1
n (x, s) ≤ sup

x∈Rd

θ(x, s).

Consequently, using (A3), we can deduce that for all x ∈ Rd, all R > 0 and all
|s| ≤ R that

(3.56) C1
Rθ(x, s) ≤ θ

1
n (x, s) ≤ C2

Rθ(x, s).

Hence, by the strict monotonicity of θ we may conclude that the inverse η
1
n satisfies

(3.57) C2
Rη(x, s) ≤ η 1

n (x, s) ≤ C4
Rη(x, s) for all |s| ≤ R.

Hence, since gn is bounded, wee see from (3.57) that

(3.58) I ≤ C lim inf
n→∞

∫ T

0

(∫
Rd

|η 1
n (x, Un(gn)| dx

) 1
p

dt =

∫ T

0

‖un‖
1
p

1 dt,

where un is the Kružkov entropy solution to (3.39) or equivalently the kinetic
solution. However, using the standard stability result for the Kružkov solution, we
have that

‖un(t)‖1 ≤ ‖u0‖1 ≤ C for all t > 0,

see e.g. [8, Proposition 2]. Note that this stability result formally follows from
setting k = 0 in entropy inequality (1.2) and integration over Rd. Here, the term
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sgn(un−k) divFFFn(x, 0) vanishes, since FFFn(x, 0) = AAAn(U−1
n (θ

1
n (x, 0))) and θ

1
n (x, 0) =

0. Consequently, we obtain

I ≤ C
which finishes the proof. �

4. Entropy weak solutions

In this section we introduce a notion of entropy weak solution for discontinuous
FFF that will be according to Lemma 2.2 equivalent to the notion of entropy weak
solution for continuous flux FFF. Moreover, under the assumption (A4) we will
establish the existence and uniqueness of such a solution.

Definition 4.1. Let all assumptions of Theorem 3.2 be fulfilled. We say that
u ∈ L∞(0,∞;L1(Rd) ∩ L∞(Rd)) is an entropy weak solution to (1.1) if there exist

U : R→ R and AAA : R→ Rd satisfying (3.1) and g ∈ L∞(Rd+1
+ ) such that

(4.1) η(x, U(g(t, x))) = u(t, x), AAA(g(t, x)) ∈ GGG(u(t, x)) a.e. in Rd+1
+ ,

u,t + divAAA(g) = 0, in sense of distribution,(4.2)

lim inf
t→0

∫
K

|u(t, x)− u0(x)| dx = 0, for any compact K ⊂ Rd,(4.3)

and for all smooth convex Ẽ, that are for all k ∈ N linear on (αk, βk), there holds

Qu(x, g),t + divQQQAAA ≤ 0, in sense of distribution,(4.4)

with Qu and QQQAAA given by

(4.5) ∂sQ
′
u(x, s) = ∂sη(x, U(s))Ẽ′(s), ∂sQQQAAA(s) = ∂sAAA(s)∂sẼ(s),

where αk, βk are defined in (3.1).

The following theorem establishes the existence and uniqueness of weak entropy
solution

Theorem 4.1. Let GGG satisfy (A1)–(A4). Then there exists a unique entropy weak
solution u to (1.1).

Once we showed the existence and uniqueness of entropy measure-valued solu-
tions, then the existence of entropy weak solutions is proved exactly the same way
as in [6] and hence we will not repeat the prove here.

Appendix A. Auxiliary results

Proposition A.1. Let [a, b] ⊂ R and let f be continuous, f, fn be monotone func-
tions such that fn → f pointwisely. Then fn → f uniformly on [a, b].

The above fact in an elementary exercise. For the proof see e.g. [2].

Proposition A.2. Let [a, b] ⊂ R and let f, fn : R→ R, Im (f) = R, Im (fn) = R,
f, fn be strictly monotone functions such that fn → f pointwisely. Then the inverse
functions converge locally uniformly to the inverse of the limit, namely (fn)−1 →
f−1 uniformly on every compact subset of R.
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Proof. We provide the proof by contradiction. Assume that fn converges uniformly
to f and that (fn)−1 does not converge pointwisely to f−1. Hence there exists
y, ε > 0 and a subsequence (fnk

)−1 such that

(A.1) (fnk
)−1(y) /∈ [f−1(y)− ε, f−1(y) + ε].

We only prove the case (fnk
)−1(y) > f−1(y) + ε. The second case follows analo-

gously. Let ȳnk
:= f−1

nk
(f(y)). By (A.1) we have the estimate

ȳnk
> y + ε.

Using the strict monotonicity of f , monotonicity of fnk
and the definition of ȳnk

we conclude an existence of δ such that

(A.2) 0 < δ ≤ f(y + ε)− f(y) = f(y + ε)− fnk
(ȳnk

) ≤ f(y + ε)− fnk
(y + ε)

which contradicts the uniform convergence of fn. Hence (fn)−1 converges point-
wisely to f−1. The uniform convergence of (fn)−1 can be concluded by Proposi-
tion A.1. �
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