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1 Introduction

There is a strong motivation to investigate the equations describing motion of mul-
ticomponent reactive flows. Such models arise in many fields of science: astrophysics,
chemistry, mathematical biology and in the engineering applications: modelling com-
bustion, chemical reactors, pollutant formation in the atmosphere or crystal growth.
These phenomena require to deal with equations of very complex mathematical struc-
ture and properties. Because of a huge gap in nowadays available methods one must
look for simplified models that can still be applied in various situations. In this work
we capture the case of steady motion for the mixture of 4 compressible gas-components
undergoing an isothermal, reversible chemical reaction constituted by

A+B 
 C (1)

and we assume that the reaction takes place in the presence of a dilutant denoted
by D. Our postulate that the process occurs in a constant temperature is met when
the reaction is slow enough to enable the surroundings to continually compensate the
difference in heats between the reactants and products. Accordingly, our model can be
characterised by the state variables: the total mass density % = %(x), the velocity vector
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field u = u(x) and the species mass fractions Yk for k ∈ S = {A,B,C,D}. The motion
of gas is described by the Navier-Stokes equations, which represent the conservation of
mass, momentum and the conservation of species mass (see [10], Chapter 2):

div(%u) = 0,
div(%u⊗ u)− div S +∇p = %f ,

div(%YAu) + div(FA) = %ωA,
div(%YBu) + div(FB) = %ωB,
div(%YCu) + div(FC) = %ωC ,

(2)

where S is the viscous stress tensor, p denotes the internal pressure of the fluid,
f – external force, ωk stands for the production rate of the kth species and by Fk,
k ∈ S we denote the diffusion fluxes.
We remark that the model is consistent with the principle of mass conservation, thus
necessarily ∑

k∈S

Yk = 1, (3)

and

ωA + ωB + ωC = 0. (4)

Furthermore observe that we consider only the first 3 mass fractions as unknowns and
use (3) to evaluate the mass fraction of the remaining species YD, while the dilutant
mass flux is given by FD = −FA −FB −FC .
The form of viscous stress tensor S is determined by the Newton’s rheological law as

S(u) = µ

[
∇u +∇(u)T − 2

3
div uI

]
+ ν div uI,

where µ, ν are constant shear and bulk viscosity coefficients respectively, while the
species mass fluxes Fk, k ∈ S, are given by the Fick’s empirical law

Fk = −Dk(%)∇Yk, k ∈ {A,B,C},

where Dk(%) stands for the diffusion coefficient

D(1 + %
γ
2 ) ≤ Dk(%) ≤ D(1 + %

γ
2 ), (5)

for some positive constants D, D.
The production rates ωk are usually approximated by the continuous function propor-
tional to the absolute temperature and concentrations of substrates and products . For
the isothermal processes we can assume that for k ∈ {A,B,C} we have

−ω ≤ ωk(YA, YB, YC , YD) ≤ ω, for all 0 ≤ Yi ≤ 1, (6)

moreover, we suppose

ωk(YA, YB, YC) ≥ 0 whenever Yk = 0. (7)
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The system (2) is supplemented by the impermeability conditions

u · n|∂Ω = Fk · n|∂Ω = 0 (8)

together with the no-slip boundary condition

u× n|∂Ω = 0. (9)

The internal pressure is a function of density % and mass fractions Y = {YA, YB, YC , YD}
and it obeys the following equation of state

p(%, Y ) = %γ +R%

(∑
k∈S

Yk
mk

)
, γ > 1, (10)

where R is the perfect gas constant. The first term describes the elastic pressure while
the latter summand represents the thermodynamic pressure for the mixture of 4 species
given by Boyle’s law. Note that, due to Thomas-Fermi-Weizsäcker approximation, the
quantum part of elastic pressure is proportional to %

5
3 , cf. [8].

Our main result concerns the existence of weak solutions in the sense specified by the
definition

Definition 1 We say a triple of functions (%,u, Y ) is a weak solution to the problem
(2), (8–9) provided % ∈ Lγ(Ω), u ∈ W 1,2

0 (Ω), Y ∈ W 1,2(Ω), Fk · n|∂Ω = 0, Yk, % ≥ 0
and

∑
k∈S Yk = 1 a.e. in Ω, and the following integral equalities hold∫

Ω

%u · ∇ξ dx = 0, ∀ξ ∈ C∞(Ω) (11)

∫
Ω

(−% (u⊗ u) : ∇ϕ+ S(u) : ∇ϕ) dx−
∫

Ω

p(%, Y ) divϕ dx

=

∫
Ω

%f · ϕ dx ∀ϕ ∈ C∞0 (Ω)

−
∫

Ω

%uYk · ∇φ dx+

∫
Ω

Dk(%)∇Yk · ∇φ dx =

∫
Ω

rkωφ dx, ∀φ ∈ C∞(Ω).

for all k ∈ {A,B,C}.

We will also use the notion of the renormalized solution to the continuity equation

Definition 2 Let u ∈ W 1,2
loc (R3) and % ∈ L6/5

loc (R3) solve

div(%u) = 0

in the sense of distributions on R3, then the pair (%,u) is called a renormalized solution
to the continuity equation, if

div b(%)u + (%b′(%)− b(%)) div u dx = 0, (12)

in the sense of distributions on R3, for all b ∈ W 1,∞(0,∞) ∩ C1([0,∞)), such that
sb′(s) ∈ L∞(0,∞).
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Theorem 1 Let Ω ∈ C2 be a bounded domain in R3, let f ∈ L∞(Ω). Let µ > 0,
ν + 2

3
µ > 0, γ > 7

3
. Then there exists a weak solution to the problem (2), (8–9) in the

sense of Definition 1. Moreover
∫

Ω
% dx = M , and if γ ≥ 3, then % ∈ L2γ(Ω), otherwise

if 7
3
< γ < 3 then % ∈ L3γ−3(Ω). Additionally, the pair (%,u) is a renormalized solution

to the continuity equation in the sense of Definition 2.

The proof of this fact relies on some ideas from the theory of weak solutions to the
Navier-Stokes equations for compressible fluids, which has been developed mainly due
to the pioneering work of Lions [13] and Feireisl [8]. An overview of these results is
given in the monograph [19]. A modification of this approach in case of steady flows
with slip boundary conditions has been introduced by Mucha and Pokorný in a two
dimensional case in [14] and in 3D in [20].
Much less is known about the problems that model additionally chemical reactions.
For the evolutionary case the existence of global in time weak solutions to the system
supplemented by the equation expressing the conservation of energy, and physically
relevant constitutive relations was established by Giovangigli [10]. He assumed, how-
ever, that the initial conditions are sufficiently close to an equilibrium state. A first
rigorous proof of existence of the, so-called, weak variational entropy solutions is due
to Feireisl, Petzeltová and Trivisa [7]. Unfortunately it seems that their approach can
not be applied to the case when the pressure depends on the species concentration,
mainly because of rather complex balance law for the entropy. Regarding simplified
models, the situation presents better, especially for one dimensional models that were
studied in a series of articles [6], [21], [2], and for the multidimensional combustion
models, for which the global existence of weak solutions with large initial data was
recently presented in [4] and then extended in [5] to treat the pressure dependence on
the mass fraction of the reactant.
From our point of view investigations devoted to stability and asymptotic analysis of
multicomponent reactive flows [11], [12] are of particular interest, since, to the best of
our knowledge, the steady problems were not considered so far. They seem to be worse
than the non steady cases in the sense that the energy inequality by itself does not give
any information about the sequence of weak solutions. Nevertheless, the recent works
of Mucha, Pokorný [15], [16] and Novotný, Pokorný [17], [18] shed some light on the
issue of existence of solutions to the steady Navier-Stokes-Fourier system, which makes
obtainment of similar results for multicomponent reactive flows more likely. Therefore
the main objective of the present paper is to undertake a first step in this direction.

Let us now outline the strategy of the proof, and thus the structure of the paper. In
the next section we introduce the approximative system following the approach from
[19], [7]. At this stage the classical theory for elliptic equations together with the
fixed point argument are sufficient to show the existence of regular solutions. In this
section we also show the basic energy estimate that is used, with some modifications,
throughout all the paper. Next we let ε → 0 in order to get rid of artificial viscosity.
The requirement imposed on the heat capacity ratio, γ > 7

3
is necessary to get the

boundedness of velocity gradient in L2(Ω) and enables to apply Lions technique of
showing the strong convergence of density. The only changes are caused by the part of
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pressure that depends on the species concentration.

2 Approximation

Combining the ideas from [19] and [7] we introduce the following approximative
system. For the constant parameters h, ε, η > 0 we will look for a triple (%η,ε,uη,ε, Yη,ε)
(we will skip the subscripts when no confusion can arise) satisfying:
• the approximate continuity equation

ε%+ div(%u) = ε∆%+ εh,
∇% · n|∂Ω = 0,

(13)

• the approximate momentum equation

1
2
%u · ∇u + 1

2
div(%u⊗ u)− div S(u) +∇p(%, Y ) = %f ,

u|∂Ω = 0,
(14)

• the approximate species balance equations

%u · ∇Yk − div((Dk)η∇Yk) = %ωk, k ∈ {A,B,C}
∇Yk · n|∂Ω = 0,

(15)

where (Dk)η is a smooth approximation of Dk(%). In particular, regularised diffusion
coefficients conserve the property (5) uniformly with respect to η.
The aim of this section is to prove

Theorem 2 Let ε > 0, h = M
|Ω| . Under assumptions of Theorem 1, there exists a triple

(%,u, Y ) being a regular solution to (13,14,15), such that % ∈ W 2,p(Ω), u ∈ W 2,p(Ω),
Yk ∈ W 2,p(Ω), k ∈ S, for all p <∞. Moreover, % ≥ 0 in Ω,

∫
Ω
% dx = M , Yk ≥ 0 and∑

k∈S Yk = 1.

In the first step we denote for p ∈ [1,∞]:

Mp =
{
w ∈ W 1,p(Ω); w|∂Ω = 0

}
,

and define the operator
S : M∞ → W 2,p(Ω),

1 ≤ p < ∞, S(u) = %, where % solves the approximate continuity equation (13)
with the Neumann boundary condition. We then claim that the following analogue of
Proposition 4.29 from [19], holds true.

Lemma 3 Let assumptions of Theorem 2 be satisfied. Then the operator S is well
defined for all p <∞. Moreover, if S(u) = %, then % ≥ 0 in Ω and

∫
Ω
% dx =

∫
Ω
h dx.

Additionally, if ‖u‖1,∞ ≤ K, K > 0, then

‖%‖2,p ≤ C(ε, p,Ω)(1 +K)h, 1 < p <∞. (16)
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Next, the existence of regular solution to the approximate species balance equations is
a consequence the following result

Lemma 4 Under the hypothesis of previous lemma there exists a unique solution to
(15) Yk ∈ W 2,p(Ω) for all 1 < p <∞, such that Yk ≥ 0 and

∑
k∈S Yk = 1.

Proof. Clearly, in view of regularity of coefficients, the standard theory for elliptic
problems yields that Yk ∈ W 2,p(Ω) for all 1 < p <∞. Furthermore, the weak maximal
principle together with the definition of species production rates ωk provides suitable
bounds from below for each Yk, k ∈ S. Indeed, the operator L defined through (15) is
uniformly elliptic and for Ω− = {x ∈ Ω : Yk(x) < 0} we have

LYk = 0,

thus

min
Ω−

Yk = min
∂Ω−

Yk = 0,

but this leads to conclusion that |Ω−| = 0 and consequently Yk ≥ 0 in Ω. SImilarly,
one can sum equations (15) together with the conservation of dilutant mass to get that∑

k∈S Yk = const. 2

Having prepared the necessary information we are ready to handle the last step in the
proof of existence of regular solutions. We will use the Leray-Schauder fixed point
theorem for the operator

T : M∞ →M∞, (17)

such that v = T (u) is a solution of the problem

− div S(v) = −1
2
%u · ∇u− 1

2
div(%u⊗ u)−∇p(%, Y ) + %f ,

% = S(u),
v|∂Ω = 0.

(18)

The existence of unique solution to this system can be shown by the direct application
of the Lax-Milgram theorem. Regarding compactness and continuity of operator T , the
only difference with respect to the situation studied in [19] is the presence of additional
term in the pressure. But, by Lemma 4 one can see that the right hand side is still
sufficiently smooth and bounded in Lp(Ω) for 1 < p <∞ in order to estimate the norm
of solution in W 2,p(Ω). The last information we need to verify the hypothesis of the
Leray-Schauder fixed point theorem is the boundedness of possible fixed points to

tT (u) = u, t ∈ [0, 1]

which will be derived from the first a priori estimate.

Lemma 5 Let assumptions of Theorem 2 be satisfied. Let t ∈ [0, 1], u ∈ M∞ be a
fixed point u = tT (u). Then there exists a constant C > 0 independent of t ∈ [0, 1],
such that

‖u‖1,2 ≤ C.
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Proof. Taking as a test function in (18) the solution u which satisfies S(u) = % one
gets ∫

Ω

S(u) : ∇u dx = −t
∫

Ω

∇p(%, Y ) · u dx+ t

∫
Ω

%f · u dx.

By definition of p and due to the approximate continuity equation∫
Ω

∇p(%, Y ) · u dx = γε

∫
Ω

|∇%|2%γ−1 dx+
γε

γ − 1

∫
Ω

%γ dx− γhε

γ − 1

∫
Ω

%γ−1 dx

−R
∫

Ω

(∑
k∈S

Yk
mk

)
% div u dx,

hence we may use the Korn inequality to estimate

(2µ+ ν)‖u‖2
1,2 + tγε

∫
Ω

|∇%|2%γ−1 dx+ t
γε

γ − 1

∫
Ω

%γ dx

≤ t
γhε

γ − 1

∫
Ω

%γ−1 dx+ tR

∫
Ω

(∑
k∈S

Yk
mk

)
% div u dx+ t

∫
Ω

%f · u dx. (19)

The first term on the right hand side can be absorbed by the corresponding one on the
left hand side. Next, observe that the Hölder and Young inequalities yield

t

∫
Ω

Yk
mk

% div u dx+ t

∫
Ω

%f · u dx ≤ t

mk

‖%‖2‖u‖1,2 + t‖f‖∞‖%‖6/5‖u‖1,2.

In order to control the norm of % in L2(Ω) we test the approximate momentum equation
by the function

Φ = B
(∫

Ω

pβ dx− 1

|Ω|

∫
Ω

pβ dx

)
where β ∈ (0, 1] and B is the Bogovskii operator. Recall that (see [1]):

‖∇Φ‖p ≤ c(p,Ω)‖pβ‖p

and due to the Sobolev imbedding, we have

‖Φ‖p̄ ≤ c(p,Ω)‖pβ‖p, 1 < p <∞,

p̄ =


3p

3−p if p < 3

∈ [1,∞) if p = 3
∞ if p > 3.

This testing results in the following identity∫
Ω

p1+β dx = −1

2

∫
Ω

% (u⊗ u) : ∇Φ dx+
1

2

∫
Ω

% (u · ∇u) · Φ dx

+

∫
Ω

S(u) : ∇Φ dx−
∫

Ω

%f · Φ dx+
1

|Ω|

∫
Ω

p dx

∫
Ω

pβ dx =
5∑
i=1

Ii. (20)
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The ”worst” estimate here will be the one connected with the convective term:

I1 + I2 ≤ ‖%‖(1+β)γ‖u‖2
1,2‖p‖

β
3γβ(1+β)
2γ(1+β)−3

≤ C‖%‖1+2a
(1+β)γ‖p‖

β
β+1 (21)

where a is the power in the interpolation inequality

‖%‖2 ≤ ‖%‖1−a
1 ‖%‖a(β+1)γ.

The latter inequality in (21) is true if 3γβ(1+β)
2γ(1+β)−3

≤ β + 1 meaning that

β =

{ 2γ−3
γ

if γ < 3

1 if γ ≥ 3.
(22)

Hence, from (20) we deduce in particular that independently of t ∈ [0, 1] and ε we have

‖%‖(1+β)γ ≤ C, (23)

provided 1 + 2a < γ. Therefore, by virtue of (22), one can see that the relevant
condition on γ is γ > 7

3
.

Estimate (23), along with (19), leads to the following conclusion

‖u‖2
1,2 + tε

(
‖%‖γγ + ‖∇%

γ
2 ‖2

2

)
≤ Ct,

that finishes the proof of Lemma 5. 2

This information allows us to repeat the procedure described in [19] which together
with the Lemmas 3, 4 yield the existence of regular solutions, and hence complete the
proof of Theorem 2.
From what has already been computed we get the estimate for the norm of pressure,
namely

‖p(%, Y )‖1+β ≤ C

with a constant independent of ε.
Moreover, taking % as a test function in the approximate continuity equation one may
get √

ε‖∇%‖2 ≤ C.

Similarly, multiplying the species conservation equations (15) by the Yk and integrating
over Ω we obtain∫

Ω

div(%u)
Y 2
k

2
dx+

∫
Ω

Dk(%)|∇Yk|2 dx =

∫
Ω

%ωkYk dx, k ∈ {A,B,C},

since 0 ≤ Yk ≤ 1, and due to (13) we have

D‖∇Yk‖2
2 ≤ C

(ε
2
‖∇%‖2‖∇Yk‖2 + εM + ω‖%‖1

)
. (24)

In view of previous estimates we may thus confirm that Yk is bounded in W 1,2(Ω) for
all k ∈ S independently of ε.
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3 Limit passage to a system with artificial pressure

The estimates from the previous section can be used to deduce that, at least for a
suitable subsequence, we have

uε → u weakly in W 1,2(Ω), (25)

%ε → % weakly in L(1+β)γ(Ω), (26)

ε∇%ε → 0 strongly in Lp(Ω), 1 ≤ p ≤ 2, (27)

(Yk)ε → Yk weakly in W 1,2(Ω), (28)

(Yk)ε → Yk weakly∗ in L∞(Ω). (29)

We are hence in a position to conclude that there exist a triple of functions (%,u, Yk)
that satisfies the integral equalities:∫

Ω

%u · ∇ξ dx = 0, ∀ξ ∈ C∞(Ω) (30)

∫
Ω

(−% (u⊗ u) : ∇ϕ+ S(u) : ∇ϕ) dx−
∫

Ω

p(%, Y ) divϕ dx

=

∫
Ω

%f · ϕ dx ∀ϕ ∈ C∞0 (Ω)∫
Ω

%uYk∇ · φ dx =

∫
Ω

Dk(%)∇Yk · ∇φ dx−
∫

Ω

%ωkφ dx, ∀φ ∈ C∞(Ω).

for k ∈ {A,B,C}. Here and in the sequel g(%,u, Y ) denotes the weak limit of a
sequence g(%ε,uε, Yε).
Accordingly there left two problems that need to be solved, namely, is it true that
p(%, Y ) = p(%, Y ) and is Dk(%)∇Yk = Dk(%)∇Yk? As we already have an information
about strong convergence of Yk for k ∈ S, the positive answer for the first question
is, as will be seen in the sequel, in fact equivalent to the strong convergence of the
density. Moreover, having proved this it will be straightforward to see that the second
hypothesis holds true as well. It is namely an easy consequence of boundedness of
Dk(%) in L2(Ω).

Since %εuε and ∇%ε possess zero normal traces, it is possible to extend the approx-
imate continuity equation to the whole R3, namely

ε1Ω%ε + div(1Ω%εuε) = ε div(1Ω%ε) + ε1Ωh. (31)

The next step will be based on some properties of the double Riesz transform, defined
on the whole R3 in the following way

Ri,j = −∂xi(−∆)−1∂xj ,

where the inverse Laplacian is identified through the Fourier transform F and the
inverse Fourier transform F−1 as

(−∆)−1(v) = F−1

(
1

|ξ|2
F(v)

)
.
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We will be using general results on such operators as continuity but also some facts
concerning the commutators involving Riesz operators, being mostly the consequence
of the Coifman-Mayer lemma [3], [9].
First, we test the approximate momentum equation by the function

ϕ(x) = ζ(x)φ, φ = (∇∆−1)[1Ω%ε], ζ ∈ C∞0 (Ω),

observe that this operation ”gains” one derivative thus the L(1+β)γ(Ω)- integrability of
%ε yields

(∇∆−1)[1Ω%ε]→ (∇∆−1)[1Ω%] in C(Ω). (32)

From this testing we have∫
Ω

ζ (p(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx =∫
Ω

ζ (%εuε · R[1Ω%εuε]− %ε(uε ⊗ uε) : R[1Ω%ε]) dx−
∫

Ω

ζ%εuε · ∇∆−1[div 1Ω%εuε] dx

+
ε

2

∫
Ω

ζ(∇%ε · ∇)uε · ∇∆−1[1Ω%ε] dx+
ε

2

∫
Ω

(∇%ε ⊗ uε) : ∇
(
ζ∇∆−1[1Ω%ε]

)
dx

+
ε

2

∫
Ω

ζ(%ε − h)uε · ∇∆−1[1Ω%ε] dx−
∫

Ω

%ε(uε ⊗ uε) : ∇ζ ⊗∇∆−1[1Ω%ε] dx

+

∫
Ω

S(uε) : ∇ζ ⊗∇∆−1[1Ω%ε] dx−
∫

Ω

p(%ε, Yε)∇ζ ⊗∇∆−1[1Ω%ε] dx

−
∫

Ω

f · %εζ∇∆−1[1Ω%ε] dx =
9∑
i=1

Ii (33)

where I2 may be expressed by means of approximate continuity equation (31) in the
following way

I2 = −ε
∫

Ω

ζ%εuε · ∇∆−1[div 1Ω%ε] dx+ ε

∫
Ω

ζ%εuε · ∇∆−1[1Ω(%ε − h)] dx.

We will compare (33) with a similar expression obtained by testing the limit momentum
equation with the function

ϕ(x) = ζ(x)φ, φ = (∇∆−1)[1Ω%], ζ ∈ C∞0 (Ω),

we have∫
Ω

ζ
(
p(%, Y )%− S(u) : R[1Ω%]

)
dx =

∫
Ω

ζ (%u · R[1Ω%u]− %(u⊗ u) : R[1Ω%]) dx

−
∫

Ω

%ε(u⊗ u) : ∇ζ ⊗∇∆−1[1Ω%] dx+

∫
Ω

S(u) : ∇ζ∇∆−1[1Ω%] dx

−
∫

Ω

p(%, Y )∇ζ ⊗∇∆−1[1Ω%] dx−
∫

Ω

f%ζ∇∆−1[1Ω%] dx =
5∑
i=1

Ii. (34)
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Now, recalling (25,26,27,28,29) and (32), we get that the ε-dependent integrals on the
right hand side of (33) disappear, whence I6, I7, I8, I9 converge to their counterparts
in (34), hence we are left with

lim
ε→0

∫
Ω

ζ (p(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx−
∫

Ω

ζ
(
p(%, Y )%− S(u) : R[1Ω%]

)
dx

= lim
ε→0

∫
Ω

ζ (%εuε · R[1Ω%εuε]− %ε(uε ⊗ uε) : R[1Ω%ε]) dx

−
∫

Ω

ζ (%u · R[1Ω%u]− %(u⊗ u) : R[1Ω%]) dx.

Our aim will be to show that the right hand side of the above equivalence disappears.
For this purpose we will apply the result being a straightforward consequence of the
Div-Curl lemma

Lemma 6 Let

Vε ⇀ V weakly in Lp(R3),

rε ⇀ r weakly in Lq(R3),

where
1

p
+

1

q
=

1

s
< 1.

Then
VεR(rε)− rεR(Vε) ⇀ VR(r)− rR(V ) weakly in Ls(R3).

We take Vε = %εuε, rε = %ε and check that they satisfy the assumptions for p = 6(1+β)γ
(1+β)γ+6

,

q = (1 + β)γ where by %ε,uε, %,u we mean the functions extended by 0 outside Ω to
the whole space.
We have enough room to choose s such that limε→0

∫
Ω
ζuε (VεR(rε)− rεR(Vε)) dx ex-

ists, i.e., we take 6
5
< s < 6(1+β)γ

(1+β)γ+12
. Hence, we finally arrive at

lim
ε→0

∫
Ω

ζ (p(%ε, Yε)%ε − S(uε) : R[1Ω%ε]) dx =

∫
Ω

ζ
(
p(%, Y )%− S(u) : R[1Ω%]

)
dx.

Observe that by the fact that ζ ∈ C∞0 (Ω) one may integrate by parts the second term
on the left hand side and by the continuity of the Riesz operator we get∫

Ω

ζ

(
p(%, Y )%−

(
4

3
µ+ ν

)
div u%

)
dx =

∫
Ω

ζ

(
p(%, Y )%−

(
4

3
µ+ ν

)
div u%

)
dx.

(35)
Now, we will exploit this identity by use of the renormalized continuity equation.

Lemma 7 Let % ∈ Lp(R3), p ≥ 2, % ≥ 0, a. e. in Ω, u ∈ W 1,2
0 (R3) satisfy the

continuity equation
div(%u) = 0
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in the sense of distributions on R3, then the pair (%,u) solves the renormalized conti-
nuity equation (12) in the sense of distributions on R3 where b(·) is specified as follows:

b ∈ C([0,∞) ∩ C1((0,∞)),

lim
s→0+

(sb′(s)− b(s)) ∈ R,

|b′(s)| ≤ Csλ, s ∈ (1,∞), λ ≤ p

2
− 1.

Applying this lemma to the limit continuity equation (30) with a function b(%) = % ln %
and ξ = 1 it can be deduced that ∫

Ω

% div u dx = 0.

To derive a similar relation for the approximative system we test (13) with a function
ξ = ln(%ε + η), η > 0. After passage to 0 with η and ε respectively, one gets∫

Ω

% div u dx ≤ 0.

Because of this, identity (35) may be transformed into:∫
Ω

p(%, Y )% dx ≥
∫

Ω

p(%, Y )% dx,

and by definition of pδ we thus have∫
Ω

(
%γ%+ %

∑
k∈S

Yk
mk

%

)
dx ≥

∫
Ω

(
%γ%+R%

∑
k∈S

Yk
mk

%

)
dx.

This inequality can be used to show strong convergence of density as soon as one
justifies

%γ% ≤ %γ%, %
∑
k∈S

Yk
mk

% ≤ %
∑
k∈S

Yk
mk

%,

which is true in the first, third and fourth case since f(%) = %p is an increasing function
for p > 0. Regarding the second relation, observe that for k ∈ S by the strong
convergence of (Yk)ε in Lp(Ω) for p < 6 we have

%Yk% = Yk%% = Yk%
2, while %Yk% = Yk%2 ≥ Yk%

2,

where the latter is a consequence of convexity of function %2.
This in turn implies the pointwise convergence for the density as we have weak conver-
gence and a convergence of norm in Lγ+1(Ω) and thus, the proof of Theorem 1 is now
complete. 2
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[20] M. Pokorný, P. B. Mucha: 3D steady compressible Navier-Stokes equations. Cont. Disc. Dynam.
Syst. S 1 (2008) 151–163.

[21] A. Zlotnik: Weak solutions of the equations of motion of a viscous compressible reacting binary
mixture: uniqueness and Lipschitz-continuous dependence on data (Russian). Mat. Zametki
75(2), 307–311 (2004).

14


