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Abstract

We prove boundedness of gradients of solutions to quasilinear parabolic system, which main part is a generalization
to p-Laplacian and its right hand side’s growth depending on gradient is not slower (and generally strictly faster) then
p − 1. Energy estimates and nonlinear iteration procedure of a Moser type are cornerstones of the used method.
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1. Introduction

1.1. General statement of the problem.

We are interested in obtaining a local boundedness of gradients of solutions to a following parabolic system in Ω ⊂ Rn:

ui
t − (Ai

α(∇u))xα = f i(x, t,∇u) i = 1, ..,N

where the main part is a generalization of p-Laplacian and the right hand side grows as 1 + |∇u|w or |∇u|w with w
specified further. We say that a right-hand-side is a fast-growing one, when w > p − 1 holds.
The existing literature on the regularity issue of parabolic equations and systems is impressive. Let us recall that
for equations the existing results are quite strong: even for the right-hand-side growth of 1 + |∇u|p one obtains C1,α

regularity of solutions: see classic monograph Ladyzhenskaya et al. [20] for the case p = 2 and DiBenedetto [9] for p ∈
(1,∞). Many further generalizations are possible: for instance in Bartier and Souplet [2] right-hand-side takes the form
eu|∇u|p, which suffices for a boundedness of ∇u. Moreover, this growth condition seems to be optimal, because there
are blowup results for gradients of solutions to equations, which right-hand-sides grow faster than p - compare Souplet
[24]. In the case of systems, the regularity results are much weaker. One can construct irregular (i.e. unbounded or
discontinous) functions, which solve homogenous parabolic systems. For n > 2 it suffices for irregularity that the
coefficients A(x, t) of the main part are discontinous (and still bounded) or that there is a relevant non-diagonality of
the main part - for details, consult Arkhipova [1]. Nevertheless, there are many classes of main parts, which allow for
higher regularity (even C1,α) in the homogenous case; these are: having structure close to Laplacian or p-Laplacian,
like those studied in Ladyzhenskaya et al. [20] or DiBenedetto [9], respectively, or having main part depending solely
on ∇u: see well-known paper by cas and Šverak [5] or more extensive research done by Choe and Bae [8]. As
these papers consider homogenous systems, one may ask a natural question: what inhomogenous counterparts of
such systems remain, in a certain sense, regular? The general answer is unknown, but there are several hints: on one
hand, for right-hand-side growing like 1 + |∇u|p−1 the regularity of the homogenous case seems to be retained - see
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DiBenedetto [9]; on the other, unlike for equations, one cannot have right-hand-side growing as fast as |∇u|p without
further assumptions, even in the case of the system with the simplest main part: i.e. an inhomogenous heat system.
Recall the classical counterexample: for n ≥ 3 bounded but discontinous function u(x) = x

|x| with unbounded weak

derivatives solves ui
t − ∆ui = ui|∇u|2 [= (n − 1) xi

|x|3 ], for details - see Struwe [25]. It turns out, that in the case of an
inhomogenous system for p = 2 one has to assume additionally a certain smallness in order to obtain regularity - for
details, refer to Tolksdorf [26], Pingen [23], Idone [16] or even the classical Ladyzhenskaya et al. [20]. The regularity
issue for a general nonlinear inhomogenous parabolic system with right-hand-side growing at the rate 1 + |∇u|w for
w possibly close to p, which homogenous counterparts enjoy regularity, is not fully researched, especially for the
case p , 2. There are several approaches to answering this question: some authors relax the notion of regularity, by
resorting to partial regularity - see for example classical papers of Italian school: Campanato [4], Giaquinta and Struwe
[14] and newer ones: Fanciullo [12], Frehse and Specovius-Neugebauer [13], Misawa [21], Duzaar and Mingione [11];
or by demanding a high integrability-type regularity2, like in Naumann [22] Kinnunen and Lewis [19] or Bensoussan
and Frehse [3] (in the last paper the growth of right-hand-side may be arbitrarily big!). Certain systems with peculiar
structure or two-dimensional ones (or at least close to them in some sense) enjoy also high regularity, for results in
this direction compare papers of Seregin, Arkhipova, Frehse, Kaplicky (and many others), for instance: Arkhipova
[1], J. Naumann and Wolff [17], Kaplicky [18], Zaja̧czkowski and Seregin [27].
In this note we concentrate on deriving a full regularity result, more precisely: the local boundedness of gradients,
for a class of quasilinliear parabolic inhomogenous systems. Our aim is twofold: firstly to obtain results for a general
inhomogenous parabolic system, which main part is analogous to the system considered in Choe and Bae [8], while
retaining possibly general growth conditions for the right-hand-side. Secondly, to sharpen these results with respect
to growth of the right-hand-side, restricting ourselves to less general systems, being close to p−Laplacian. For similar
result on the level of solutions, compare Giorgi and O’Leary [15].
Let us emphasize, that we proceed in a manner typical for the regularity approach: we assume existence of solution
u in a given class, which is often a deep problem itself, from which we derive higher regularity. Moreover, we
concentrate on a priori estimates while conducting the proofs: the rigorous version of computations is commented on
in the conclusion.

1.2. General definitions and assumptions.

Consider parabolic problem in Ω ⊂ Rn:

ui
t − (Ai

α(∇u))xα = f i(x, t,∇u) i = 1, ..,N (1)

As all our results have a local character, any further specification of Ω is irrelevant.
We say that a vector valued function u ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; W1,p(Ω)) is a solution to (1) iff∫

ΩT

−uiφi
t + Ai

α(∇u)φi
xα =

∫
ΩT

f i(x, t,∇u)φi ∀
φ∈C∞0 (ΩT )

(2)

Globally, following notions will be used:

• δαβ denotes the Kronecker delta,

• QR(x0, t0) denotes parabolic cylinder, i.e. BR(x0) × (t0 − Rp, t0); when possible, cut short to QR,

• ηρ,R ∈ C∞0 (QR) denotes standard parabolic cutoff function for Qρ ⊂ QR, when possible, cut short to η, which
satisfies: η = 1 in Qρ, η = 0 outside QR, |∇η| ≤ c(R − ρ)−1, |η,t | ≤ c(R − ρ)−p.

Throughout the article, summation convention is in use.

2such results are especially interesting, as our result may be easily strenghtened via higher regularity

2



1.3. The structure of results.
We show our results in a following order:

1. First we derive a general result for inhomogenous version of system analyzed in Choe and Bae [8], where
ellipticity assumptions for the main part are generalized by introducing exponent q (theorem 2). Here, loosely
speaking, admissible growth for the right-hand-side is 1 + |∇u|p−1, so this result may be seen as parallel to
DiBenedetto [9].

2. Next we allow for for faster growths of for the right-hand-side, at the cost of assuming that the main part is
closer to p- Laplacian, in the sense that it is not enriched with terms involving q > p (theorem 3).

3. Finally, we state the result for the least general case, i.e. for 3D p-Laplacian with right-hand-side growing as
|∇u|w (theorem 1).

As the last result seems to be the most traceable one, let us give incentive to studying the technical remainder of this
paper by stating theorem 1 now:

Consider u = (ui) ∈ L∞(0,T ; L2(Ω)) ∩ Lp(0,T ; W1,p(Ω)) solving the 3D p-Laplace system:

ui
t − div(|∇u|p−2∇ui) = f i(t, x, u,∇u) i = 1, 2, 3 (3)

Theorem 1. Let Ω be an arbitrary domain. Assume a growth condition: | f i(x, t,∇u)| ≤ |∇u|w, w ≤ p and initial
integrability3 |∇u|L p̃

loc
< ∞. If one of the following conditions is fullfilled:

1. w ≤ p − 1, p̃ = p;
2. p ≥ 2, w < p̃+4p−3

5 , ∇u ∈ L p̃(ΩT );
3. p ≤ 2, w ≤ p

2 , p̃ = p

then ∇u is bounded:
|∇u|L∞loc

< C|∇u|L p̃
loc

(4)

For the proof, see the end of the next section.
Observe, that by point 2. merely from existence, i.e for p̃ = p, one has w < p − 3

5 . This corresponds for p = 2 with
Campanato’s notion of controllable growth (see for example Campanato [4]). Therefore this result may be seen as a
generalization of classical results over gradients of p-Laplacian-like systems. Utilizing results on high integrability of
certain systems, one may relax growth condition further. For example for the system analysed in Naumann [22] we
have w < ε + 9

5 , because ∇u ∈ Lε+4(ΩT ), which can be taken as the initial integrability L p̃ .
Let | f i(x, t,∇u)| ≤ |∇u|w hold. In all our theorems there is no explicit assumption, that w < p. In fact the inequality
w ≤ p is enforced by the rigorous treatment of energy estimates. Simultaneously we know from the counterexample
recalled in the introduction, that w = p is generally not admissible. Therefore our results can be viewed as a way
to quantify the possible boundedness of gradients by means of higher integrability. As in the just mentioned case of
theorem 1, for p = 2 one has w < p − 3

5 , which can be boosted in some cases to w < ε + 9
5 , because ∇u ∈ Lε+4. For

w = p one would need ∇u ∈ Lε+5.

2. Boundedness of gradient of solution

As outlined in the introduction, first we prove the general theorem. As the cornerstone of the analysis is energy
method, we derive formal estimates for the sake of transparency. For a rigorous justification of the formal estimates
please consult the conclusion of this note. We analyze solutions of:

ui
t − (Ai

α(∇u))xα = f i(x, t,∇u) i = 1, ..,N (5)

where the main part comes from Choe and Bae [8] and the right-hand-side grows as 1 + |∇u|w, w ≤ δ for a certain
δ ≤ p, obtaining the boundedness of ∇u. More precisely, one has a following:

3From existence one has p̃ = p, so this assumption may be void. It only helps to quantify the results when we have some additional knowledge
on integrability.
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Theorem 2. Under the following assumptions:

(A0) ellipticity-type: Ai
α is given by potential F ∈ C2(R), F′(0) ≥ 0, as follows:

Ai
α(Q) = (F(|Q|)Qi

α
(6)

and F enjoys ellipticity:

(F(|Q|)Qi
αQ j

β
ζ i
αζ

j
β ∈ [λ|Q|p−2,

1
λ
|Q|p−2 + |Q|q−2]|ζ |2 (7)

where:
1 < p ≤ q < p + 1 < ∞ (8)

(A1) growth-type:
| f i| ≤ +c1|∇u|w + c2 (9)

where
w ≥ 0, ci ∈ L∞(ΩT ) (10)

(A2) initial integrability: Let
M := max(2, p, 2q − p,w + 1, 2w − p + 2) (11)

∇u ∈ Ls0+M
loc (ΩT ) (12)

with s0 satisfying:

s0 ≥ 0, s0 + 2 +
np
2
−

Mn
2

> 0 (13)

and s0 > p − 2 f or c2 , 0
s0 > p − 2w − 2 f or c2 = 0

(14)

Gradient of solution to (5) is locally bounded; moreover, for any QR0 ⊂ Ω with R0 < 1 following inequality holds:

|∇u|L∞(Q R0
2

) ≤ C(−
∫

QR0

|∇u|s0+M)
1

s0+2+
np
2 −

Mn
2 + C (15)

Proof. First we derive formal energy inequalities, then implement iteration scheme.

Differentiate formally system (5) to obtain:

ui,txγ −(Ai
α, u j

xβ

(∇u)u j
xβxγ )xα = ( f i(x, t,∇u))xγ i = 1, ..,N (16)

testing (16) by ui
xγ |∇u|sη2 one gets:

I + II :=
[ 1

s + 2
sup

t

∫
BR

(|∇u|s+2η2)
]

+

[ ∫
QR

Ai
α , u j

xβ

(∇u)u j
xβxγ (|∇u|sui

xγxαη
2 + s|∇u|s−2ui

xγu
k
xαxδu

k
xδη

2)
]

= −

∫
QR

f i(x, t,∇u)[ui
xγxγ |∇u|sη2 + sui

xγ |∇u|s−2uk
xδxγu

k
xδη

2 + 2ui
xγ |∇u|sηηxγ ]

+
2

s + 2

∫
QR

|∇u|s+2ηηt −

∫
QR

Ai
α, u j

xβ

(∇u)uk
xβxγu

k
xγ |∇u|sηηxα (17)

Consider II. Utilizing ellipticity assumption (A0) with ζ l
ρ := ul

xβxρ one estimates the first summand of II as follows:∫
QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ |∇u|sui

xγxαη
2 ≥ λ

∫
QR

|∇u|p−2|∇2u|2|∇u|sη2 (18)
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and because Ai
α is given by potential F, from differentiation we estimate the second summand of II:

∫
QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ s|∇u|s−2ui

xγu
k
xαxδu

k
xδη

2 =

∫
QR

[
F′′(|∇u|)

ui
xαu j

xβ

|∇u|2
+F′(|∇u|)

(δi
xαδ

j
xβ

|∇u|
−

ui
xαu j

xβ

|∇u|3
)]

u j
xβxγ s|∇u|s−2ui

xγu
k
xαxδu

k
xδη

2

= s
∫

QR

η2F′′(|∇u|)|∇u|s−4 (ui
xγu

j
xβu

j
xβxγ )︸         ︷︷         ︸

ci

(ui
xαuk

xδu
k
xδxα )︸         ︷︷         ︸

ci

+s
∫

QR

η2F′(|∇u|)|∇u|s−5
(

uk
xδu

k
xδxαui

xγu
i
xγxα |∇u|2︸                    ︷︷                    ︸

= 1
4 (|∇u|2)xα (|∇u|2)xα |∇u|2

− ui
xαui

xγu
j
xβu

j
xβxγu

k
xδu

k
xδxα︸                     ︷︷                     ︸

= 1
4 ui

xα (|∇u|2)xαui
xγ (|∇u|2)xγ

)
(19)

From the ellipticity assumption (A0) one has F′′(|s|) ≥ 0, F′(0) ≥ 0 therefore it holds: F′(|s|) ≥ 0. This, in conjunction
with a following computation: ui

xα (|∇u|2)xαui
xγ (|∇u|2)xγ ≤ |∇u|2|∇|∇u|2|2 = |∇u|2(|∇u|2)xβ (|∇u|2)xβ , implies that equation

(19) takes the form: ∫
QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ s|∇u|s−2ui

xγu
k
xαxδu

k
xδη

2 ≥ 0 (20)

Summing up (18) (20) we conclude, that II satisfies:∫
QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ (|∇u|sui

xγxαη
2 + s|∇u|s−2ui

xγu
k
xγxδu

k
xδη

2) ≥ λ
∫

QR

|∇u|p−2|∇2u|2|∇u|sη2 (21)

Inputting inequality (21) into (17) we arrive at:

1
s + 2

sup
t

∫
QR

|∇u|s+2η2 + λ

∫
QR

|∇u|p−2|∇2u|2|∇u|sη2 ≤∫
QR

f i(x, t,∇u)[ui
xγxγ |∇u|sη2+sui

xγ |∇u|s−2uk
xδxγu

k
xδη

2+2ui
xγ |∇u|sηηxγ ]+

2
s + 2

∫
QR

|∇u|s+2ηηt−

∫
QR

Ai
α(∇u) j

β

(∇u)uk
xβxγu

k
xγ |∇u|sηηxα

≤ c
∫

QR

[1+|∇u|w][(1+s)|∇2u||∇u|sη2+2|∇u|s+1η|∇η|]+
c

s + 2

∫
QR

|∇u|s+2η|ηt |+
c
λ

∫
QR

[|∇u|p−2+|∇u|q−2]|∇2u||∇u|s+1η|∇η|

(22)

where the last inequality is valid in view of growth (A1) and ellipticity (A0) assumptions.
Absorb |∇2u| from right-hand-side of (22) using Young’s inequality:

1
s + 2

sup
t

∫
QR

|∇u|s+2η2 + (λ − ε)
∫

QR

|∇u|p−2|∇2u|2|∇u|sη2 ≤

c
∫

QR

(1+|∇u|w)|∇u|s+1η|∇η|+
c

s + 2

∫
QR

|∇u|s+2η|ηt |+c
∫

QR

|∇u|s[|∇u|p+|∇u|2q−p]η2|∇η|2+c(1+s)
∫

QR

η2|∇u|s[|∇u|2w−p+2+|∇u|2−p]

(23)

By estimates for derivatives of cutoff function η we obtain:

1
s + 2

sup
t

∫
QR

|∇u|s+2η2 + (λ − ε)
∫

QR

|∇u|p−2|∇2u|2|∇u|sη2 ≤

c
(R − ρ)max(2,p)

∫
QR

|∇u|s
[
|∇u|p + |∇u| + |∇u|w+1 +

1
(2 + s)

|∇u|2 + |∇u|p + |∇u|2q−p + (1 + s)(|∇u|2w−p+2 + |∇u|2−p)
]

(24)

for 0 < ρ < R < 1. As for some w, p the exponents 2w − p + 2, 2 − p may be nonpositive, we estimate respective
powers of |∇u| using |∇u|s as follows:∫

QR

|∇u|s[(1 + s)(|∇u|2w−p+2 + |∇u|2−p)] ≤ (1 + s)
∫

QR

[1 + |∇u|max(s+2−p,s+2w+2−p)] (25)
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for the last inequality to hold, we must assume

s > max(p − 2w − 2, p − 2) (26)

Because summand |∇u|2−p occurs only if c2 , 0 in the growth condition (A1): | f i| ≤ c1|∇u|w +c2, the above assumption
(26) can be written as: s > p − 2 f or c2 , 0

s > p − 2w − 2 f or c2 = 0
(27)

In the forthcoming iteration scheme we construct growing sequence of si, therefore it is sufficient to assumes0 > p − 2 f or c2 , 0
s0 > p − 2w − 2 f or c2 = 0

(28)

which coincides with our initial integrability assumption (A2).
By computation, a following inequality holds:∫

QR

|∇(|∇u|
p+s
2 η)|2 ≤

∫
QR

|∇u|p+s|∇η|2 + (p + s)2
∫

QR

|∇u|p+s−2|∇2u|2η2 (29)

Adding to both sides λ−ε
(p+s)2

∫
QR
|∇u|p+s|∇η|2 and considering properties of η, as (s + p)2 ≤ c(1 + s2), we arrive from

(24), by virtue of (29), at:

sup
t

∫
QR

|∇u|s+2η2 +

∫
QR

|∇(|∇u|
p+s

2 η)|2 ≤
c(1 + s3)
(R − ρ)M

∫
QR

[
1 + |∇u|s+M]

(30)

taking into account (25) if neccessary. Recall, that M := max(2, p, 2q − p,w + 1, 2w − p + 2).
By Hölder and critical-Sobolev inequalities (respectively), one gets:∫

Qρ

|∇u|p+s+(s+2) 2
n ≤

∫ t0

t0−R2

[ ∫
BR

|∇u|s+2η2
] 2

n
[ ∫

BR

|∇u|(s+p) n
n−2 η

2n
n−2

] n−2
n

≤

[
sup

t

∫
BR

|∇u|s+2η2
] 2

n
∫ t0

t0−R2

[ ∫
BR

(|∇u|
p+s

2 η)
2n

n−2

] n−2
n

≤

[
sup

t

∫
BR

|∇u|s+2η2
] 2

n
∫

QR

|∇(|∇u|
p+s
2 η)|2

(30)
≤

[ c(1 + s3)
(R − ρ)M

∫
QR

1+|∇u|s+M
]1+ 2

n

(31)

Inequality (31) is our desired energy estimate, which we now iterate. Define recursively numbers si: si+1 + M =

p + si + (si + 2) 2
n , then:

si = (1 +
2
n

)i[s0 + n + 2 −
n(p − M)

2
] − [2 −

n(p − M)
2

] (32)

Utilizing the initial-integrability assumption, i.e. s0 + 2 + n − n(p−M)
2 > 0, we have:

si
i→∞
→ ∞;

si

(1 + 2
n )i

i→∞
→ s0 + 2 + n −

n(p − M)
2

(33)

Let:
ψi = −

∫
S Ri

|∇u|si+M (34)

then (31) with ηRi+1,Ri can be written as:

|S Ri+1 |ψi+1 ≤ [C(1 + sp
i )(

2i+2

R0
)M |S Ri |(1 + ψi)]1+

p
n =⇒ Rn+2

i+1 ψi+1 ≤ [C(1 + sp
i )(

2i+2

R0
)MRn+2

i+1 (1 + ψi)]β =⇒

ψi+1 ≤ C(1 + sp
i )β2i(1 + ψi)]β (35)

6



with β := 1 + 2
n ; the last inequality given by Ri := R0

2 (1 + 2−i). As we know from (33) that asymptotically si behaves
like βi, finally (35) folds to:

ψi+1 ≤ Ciψ
β
i + Ci (36)

which, by a standard computation (see Choe and Bae [8] for details), gives

ψi+1 ≤ Cβi+1
ψ
βi+1

0 + (i + 1)Cβi+1
(37)

From the above considerations one gets, using the definition of ψ:

R
− n+2

si+1+M

0 |∇u|Lsi+1+M (Q R0
2

) ≤ (−
∫

S Ri+1

|u|si+1+M)
1

si+1+M = ψ
1

si+1+M

i+1

(37)
≤ (Cβi+1

ψ
βi+1

0 )
1

si+1+M +((i+1)Cβi+1
)

1
si+1+M

i→∞
→ Cψ

1
s0+2+n− Mn

p

0 +C

(38)

in view of (33).
As si + M

i→∞
→ ∞, (38) in tandem with initial integrability assumption gives the following uniform bound:

|∇u|L∞(Q R0
2

) ≤ C(−
∫

QR0

|∇u|s0+M)
1

s0+2+n− Mn
p + C (39)

In the next theorem we resign from the term possessing q > p in the ellipticity assumption. This allows us, in turn, to
obtain bigger growths of right-hand-side, as now it is possible to derive estimates for negative s > − λ

Λ
.

Theorem 3. Gradient of solution to (5) is locally bounded, under the following assumptions:

(A0) ellipticity-type: Ai
α is given by potential F ∈ C2(R) as follows:

Ai
α(Q) = (F(|Q|)Qi

α
(40)

and F enjoys ellipticity:
(F(|Q|)Qi

αQ j
β
ζ i
αζ

j
β ∈ [λ|Q|p−2,Λ|Q|p−2]|ζ |2 (41)

(A1) growth-type:
| f i| ≤ c|∇u|w, w ≥ 0, c ∈ L∞(ΩT ) (42)

(A2) initial integrability Let
M := max(2, p,w + 1, 2w − p + 2) (43)

∇u ∈ Ls0+M
loc (ΩT ) (44)

with s0 satisfying s0 > max(− λ
Λ
, p − 2w − 2)

s0 + 2 +
np
2 −

Mn
2 > 0

(45)

moreover, for any QR0 ⊂ Ω with R0 < 1 following inequality holds:

|∇u|L∞(Q R0
2

) ≤ C(−
∫

QR0

|∇u|s0+M)
1

s0+2+
np
2 −

Mn
2 + C (46)
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Proof. For s ≥ 0 theorem 3 is a special case of theorem 2, therefore it suffices to show it in the case of negative s.
The only difference in the energy estimates is the lack of positivity of the left-hand-side term of (17), where sign of s
plays a role: ∫

QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ s|∇u|s−2ui

xγu
k
xγxδu

k
xδη

2 (47)

it can be however estimated as follows:∫
QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ s|∇u|s−2ui

xγu
k
xγxδu

k
xδη

2 = s
∫

QR

η2F′′(|∇u|)|∇u|s−4ui
xγu

j
xβu

j
xβxγu

i
xαuk

xδu
k
xδxα ≥ sΛ

∫
QR

η2|∇u|p+s−2|∇2u|2

(48)

which allows for a following counterparty of (21)∫
QR

Ai
α ′(∇u) j

β

(∇u)u j
xβxγ (|∇u|sui

xγxαη
2 + s|∇u|s−2ui

xγu
k
xγxδu

k
xδη

2) ≥ (λ + sΛ)
∫

QR

|∇u|p−2|∇2u|2|∇u|sη2 (49)

From this inequality on one proceeds identically as in proof of theorem 2.

Finally, let us comment on the theorem 1.

Proof of theorem 1. Observe that for p-Laplace system λ = Λ. Therefore, the points 2. and 3. of the above theorem
are a direct consequence of theorem 3; point 1., which is not entirely covered by theorem 3, stems from theory in
DiBenedetto [9].

Please recall, that by point 2. merely from existence, i.e for p̃ = p, one has w < p − 3
5 .

3. Conclusion.

3.1. Note on the rigorous estimates.

The above computations are formal. To perform them rigorously, transform the considered problem using Steklov av-
erages with respect to time and use finite differences instead of differentiating it with respect to space. This procedure
has been presented in DiBenedetto [9], DiBenedetto and Friedman [10] for homogenous systems. In our case we need
to deal additionaly with quasilinear right-hand-side, for which the testing function ui

xγ |∇u|sη2 may not be admissible.
In order to begin iteration, we need to have: s0 + w + 1 ≤ p and to perform it at the i-th step: si + w + 1 ≤ si + M.
However the second inequality holds from the definition of M, the first may prove sometimes troublesome. In such
cases one can resort to testing with Fn(ui

xγ |∇u|sη2), where Fn(x) is a Lipschitz truncation at the level n. As the esti-
mates are valid for every n we can proceed as before. Observe however, that we do not encounter these difficulties
during computations for theorem 1. For additional rigorous treatment (especially for s nonpositive, consult Choe and
Bae [8] and reference therein4 as well as Choe [7, 6]).

3.2. Further research.

There are many possible generalizations to the result. The most obvious one is to allow for bigger growths of right-
hand-side using some natural extra assumptions, especially as some of them appear naturally in the existence theory,
like boundedness of the solution (for this, consult the forthcoming paper). It would be interesting to obtain a general
result for critically growing right-hand-side (i.e. like 1 + |∇u|p), with some smallness assumption, which would
generalize the classical results mentioned in the introduction for the heat system.

4Observe, however, that in Choe and Bae [8] there are allowed s0 > −2, which seems to be an error as far as s ∈ (−2,−1] are concerned.

8



References

[1] A. Arkhipova. New a priori estimates for nondiagonal strongly nonlinear parabolic systems. Parabolic and Navier-Stokes equations, Banach
Center publications, 81:13–30, 2008.

[2] J. Bartier and P. Souplet. Gradient bounds for solutions of semilinear parabolic equations without Bernsteins quadratic condition. C. R. Acad.
Sci. Paris, Ser. I 338:533–538, 2004.

[3] A. Bensoussan and J. Frehse. On diagonal elliptic and parabolic systems with super-quadratic Hamiltonians. Commun. Pure Appl. Anal., 1:
83–94, 2009.
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