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Streszczenie

Celem rozprawy jest matematyczny opis wªasno±ci kilku modeli pochodz¡-
cych z biologii matematycznej. Badane zagadnienia dotycz¡ ukªadów agregu-
j¡cych cz¡stek, których ruch opisany jest za pomoc¡ pewnego nielokalnego
operatora. Modele te, s¡ te» w pewnym sensie uogólnieniem ukªadu rów-
na« Keller-Segela opisuj¡cego proces chemotaksji. Wyniki dotycz¡ isnienia
rozwi¡za« badanych zagadnie«, ich asymptotyki dla du»ych czasów oraz sta-
bilno±ci jednorodnych stanów stacjonarnych. Ponadto badamy warunki, dla
których rozwi¡zania, albo istniej¡ globalnie, albo wybuchaj¡ w sko«czonym
czasie.

Abstract

The goal of this doctoral dissertation is to study several models coming from
mathematical biology. We deal with systems of aggregating particles, which
move due to certain nonlocal interactions. Such models are, in some sense,
generalizations of the famous Keller-Segel equations describing chemotaxis.
Our results concern the existence of solutions, their asymptotic behaviour
for large time, and the stability of homogeneous steady states. Moreover,
we investigate conditions for which solutions either exists globally in time or
blow up in �nite time.

AMS subject classi�cations: 35K15; 35B40; 92C17
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Chapter 1

Introduction

1.1 Chemotaxis process

Mathematical analysis plays more and more important role in understanding

many complex processes in biology. A great example is a phenomenon called

chemotaxis which describes the change of motion of a population density or of

single particles according to chemical signals in their environment. Cells move

toward a higher concentration of the chemical stimulus (positive chemotaxis)

or away from it (negative chemotaxis). In the �rst case, the chemical signal is

called chemoattractant, which is usually produced by species itself, whereas it

is called chemorepellent in the second situation. As a consequence, organisms,

such as bacteria, can direct their movement either to �nd food or to avoid

poison. Moreover, in the case of the positive chemotaxis, an interesting

feature is that particles can organize themselves spatially (sometimes forming

patterns) or form a more complex organisms.

It is known, that chemotaxis play an essential role in many biological pro-

cesses. In the immunology and in�ammatory context it is used to describe

the movement of neutrophils (a type of white blood cell used by immune

system) toward in�ammation from tissue injury as a result of chemicals re-

leased by the tissue. Moreover, the chemotaxis type movement is observed in

many important cell-communication processes, such as: organization of cell

positioning during embryonic development, tumor cell migration or bacterial

growth colony and formation of aggregates in populations of e.g. Escherichia

coli.

One can look at the modelling chemotaxis phenomena from two di�erent

perspectives: the full population (macroscopic level) or an individual parti-

10
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cle (microscopic level). There is a large number of papers considering the

microscopic approach as well as the derivation of the macroscopic ones from

them. We refer the reader to [15, 43, 47, 48] and references therein for precise

statement and mathematical results.

In this dissertation we focus on macroscopic level. The mathematical

study on this approach began in 1971. Evelyn F. Keller and Lee A. Segel

[28] presented a system of two strongly coupled parabolic partial di�erential

equations, which describes the aggregation of cells. Let u(t, x) denote the

density of the cells and c(t, x) denote a chemoattractant concentration at

time t in point x. The simpli�ed Keller-Segel model look as follows

ut = ∇(∇u− χu∇c) for x ∈ Ω, t > 0, (1.1)

εct = ∆c+ u− c for x ∈ Ω, t > 0, (1.2)

where Ω can be either the subset of Rd or the whole space and ε ≥ 0. The

main issue which (still) attracts mathematicians attention is the competition

between di�usion and aggregation. Roughly speaking, if di�usion wins then

we have global-in-time solutions to (1.1)�(1.2) whereas solutions blow up in

�nite time in the second case. However, there are still lots of open questions

concerning this system. Here, we refer the reader to the review works of

Horstmann [21], Hillen and Painter [20] and reference therein for more details

about chemotaxis model and some part of mathematical results. Moreover,

for later purpose, we highlight the simpli�ed, parabolic-elliptic version of

(1.1)�(1.2), which was intensively studied at the �rst stage of mathematical

analysis of chemotaxis, namely

ut = ∇ · (∇u− u∇c), −∆c+ c = u, x ∈ Ω, t > 0. (1.3)

1.2 Structure of the dissertation

This dissertation consist of the following three papers:

• R. Celi«ski, Asymptotic behaviour in a one dimensional model of in-

teracting particles, Nonlinear Analysis 75 (2012), 1972�1979.

• R. Celi«ski, Stability of solutions to aggregation equation in bounded

domains, submitted, (arXiv:1204.5293).
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• R. Celi«ski, D. Hilhorst, G. Karch, M. Mimura, Mathematical proper-

ties of solutions to the model of formation chemotactic E. coli colonies,

in preparation.

The next three chapters collect all results from those papers and they can be

considered separately.

1.3 Asymptotic behaviour in a one dimensional

model of interacting particles

In Chapter 2, we study the asymptotic behaviour of solutions to the one

dimensional initial value problem

ut = εuxx + (u K ′ ∗ u)x for x ∈ R, t > 0, (1.4)

u(x, 0) = u0(x) for x ∈ R, (1.5)

where the interaction kernel K ′ is a given function, the initial datum u0 ∈
L1(R) is nonnegative and ε ≥ 0.

Equation (1.4) arises in the study of an animal aggregation as well as in

some problems in mechanics of continuous media. The unknown function

u = u(x, t) represents either the population density of a species or, in the

case of material applications, the particle density. The kernel K ′ in (1.4)

can be understood as the derivative of a certain function K, that is, K ′

stands for dK/ dx. We use this notation to emphasise that the cell inter-

action described by equation (1.4) takes place by means of a potential K.

Moreover, our assumptions on the interaction kernel K ′ imply that equation

(1.4) describes particles interacting according to a repulsive force (this will

be clari�ed bellow).

Let us �rst notice that the one dimensional parabolic-elliptic system of

chemotaxis (1.3) can be written as equation (1.4). Indeed, if we put K(x) =

−1
2
e−|x| into (1.4), which is the fundamental solution of the operator ∂2x−Id

on R, one can rewrite the second equation of (1.3) as v = −K ∗ u. Here,

however, we should emphasise that below we consider repulsive phenomena

where the interaction kernel has the opposite sign, see Remark 2.3 for more

details.

This work is motivated by the recent publication [25] by Karch and Suzuki

where the authors study the large time asymptotics of solutions to (1.4)-(1.5)
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under the assumption K ′ ∈ L1(R). They showed that either the fundamental

solution of the heat equation or a nonlinear di�usion wave appear in the

asymptotic expansion of solutions as t → ∞. Analogous results on the

solutions of the one dimensional chemotaxis model (1.3) can be found in

[40, 41]. Here, we would like to point out that, in all those results, a di�usion

phenomena play a pivotal role in the large time behaviour of solutions to

problem (1.4)-(1.5).

The main goal of this work is to show that for a large class of interaction

kernelsK ′ ∈ L∞(R)\L1(R), the di�usion is completely negligible in the study

of the large time asymptotics of solutions. Let us discuss it more precisely.

Our assumption on the interaction kernel implies that K ′(x) is a su�ciently

small perturbation of the function −A
2
H(x), where, A ∈ (0,∞) is a constant

and H is the sign function given by the formula: H(x) = −1 for x < 0

and H(x) = 1 for x > 0 (cf. Remark 2.2). Under these assumptions, we

show that for large values of time, a solution of problem (1.4)-(1.5) looks as

a compactly supported self-similar pro�le, de�ned as the space derivative of

a rarefaction wave, i.e. the solution of the Riemann problem for the inviscid

Burgers equation ut+Auux = 0 (see Corollary 2.6 for the precise statement).

In our reasoning, �rst, we consider ε > 0, and our result on the large

time behaviour are, in some sense, independent of ε. Next, we pass to the

limit as ε → 0 to obtain an analogous result for the inviscid aggregation

equation ut−(u K ′∗u)x = 0. In particular, our assumptions imply that weak

nonnegative solutions to the initial value problem for this inviscid equation

exist for all t > 0.

1.4 Stability of solutions to aggregation equa-

tion in bounded domains

In Chapter 3 we consider the initial value problem for the following non-local

transport equation

ut = ∇ · (∇u− u∇K(u)) for x ∈ Ω ⊂ Rd, t > 0, (1.6)

supplemented with the Neumann boundary conditions, i.e

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0, (1.7)
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and an initial datum

u(x, 0) = u0(x) ≥ 0. (1.8)

Here, K(u) = K(u)(x, t) is a linear operator de�ned via the following integral

formula

K(u)(x, t) =

∫
Ω

K(x, y)u(y, t) dy

for a certain function K = K(x, y) which we call as an aggregation kernel.

There is a large number of works considering the inviscid aggregation

equation

ut +∇ · (u(∇K ∗ u)) = 0 (1.9)

in the whole space Rd which has been used to describe aggregation phe-

nomena in the modelling of animal collective behaviour as well as in some

problems in mechanics of continuous media, see for instance, [12, 32, 35].

The unknown function u = u(x, t) ≥ 0 represents either the population den-

sity of a species or, in the case of materials applications, the particle density.

Equation (1.9) was derived from the system of ODE called �individual cell-

based model� [8, 47] representing behaviour of a collection of self-interacting

particles via pairwise potential which is described by the aggregation kernel

K. More precisely, equation (1.9) is a continuum limit for a system of par-

ticles Xk(t) placed at the point k at time t, and evolving by the system of

di�erential equations:

dXk(t)

dt
= −

∑
i∈Z\{k}

∇K(Xk(t)−Xi(t)), k ∈ Z,

where K is the potential.

Questions on the global-in-time well-posedness, �nite and in�nite time

blowups, asymptotic behaviour of solutions to equation (1.9), as well as to

the equation with an additional di�usion term, have been extensively studied

by a number of authors; see e.g. [2, 4, 5, 11, 26, 30, 31] and reference therein.

One introduces the di�usion term in (1.9) to make the model more re-

alistic and to describe the interesting biological (and mathematical, as well)

phenomenon: competition between aggregation and di�usion, see e.g. [6, 14,

25, 38].
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In this work, however, our main motivation to study such models is

that, in a particular case, equation (1.6) corresponds to the parabolic-elliptic

chemotaxis model (1.3). Here, the function K(x, y) is the Green function of

the operator −∂2x + I on Ω with the Neumann boundary conditions. This

is called the Bessel potential and it is singular at the origin if Ω = Rd,

d ≥ 2. On the other hand, in the one dimensional case, when Ω = [0, 1] this

fundamental solution is given by the explicit formula i.e.

K(x, y) =
1

2
e−|x−y| +

ex+y + e2−x−y + ex−y + ey−x

2(e2 − 1)
. (1.10)

In this work we derive some properties of solutions of aggregation equation

in a bounded domain under no-�ux boundary condition (1.7). The main

goal, is to study stability of homogeneous solutions. In particular, we derive

conditions under which homogeneous solutions to problem (1.6)�(1.8) are

either stable or unstable. Here, let us point out that instability result does not

depend on dimension of the domain, and cover the case when the aggregation

kernel comes from the chemotaxis model (1.3). Hence, even though solutions

are global-in-time and bounded, a homogeneous steady state can be unstable.

This means that even in the one dimensional chemotaxis (where all solutions

are global-in-time) we can observe the competition between aggregation and

di�usion mentioned above.

For the completeness of exposition we also discuss the existence of solu-

tions to (1.6)�(1.8). In order to do that, we use rather standard and well

known techniques. In particular, we show that under some general condi-

tions on aggregation kernel we can always construct local-in-time solution

to (1.6)�(1.8). However, an additional regularity assumption on the initial

datum have to be imposed if ∇xK is, in some sense, too singular. Moreover,

for mildly singular kernels (see De�nition 3.9 for a precise statement), prob-

lem (1.6)�(1.8) has a global-in-time solution for any nonnegative, integrable

initial condition.

1.5 Mathematical properties of solutions to the

model of formation chemotactic E. coli colonies

Experiments performed by Budrene and Berg [9, 10] have shown that chemo-

tactic strains of bacterias E. coli form stable and remarkably complex spatial

patterns such as swarm rings, radial spots, and interdigitated arrays of spots,
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when inoculated in semi-solid agar. They suggested that the complexity of

patterns depend strongly on the initial concentration of substrate, which

determines how long a multicellular aggregate structures remain active. Bu-

drene and Berg expect that a substrate consumption, a cell proliferation,

an excretion of attractant, and especially a chemotactic motility, when they

are combined in a certain way, can generate complex spatial structures. In

particular, a specialized, and more complex morphogenetic program is not

required.

In order to understand theoretically such a chemotactic pattern formation

Mimura and Tsujikawa [34] �rst presented the following mesoscopic model

based on the chemotaxis and growth of bacteria,

ut = du∆u−∇ · (u∇χ(c)) + f(u) for x ∈ Ω× (0,∞),

ct = dc∆c+ αu− βc for x ∈ Ω× (0,∞),

in a bounded domain and supplemented with the homogeneous Neumann

boundary conditions and nonnegative initial data. Here, u = u(x, t) denotes

the density of cells and c = c(x, t) is a concentration of chemoattractant.

Note that, in the absence of the function f(u), this system reduces to the

famous Keller-Segel equations (1.1)�(1.2). Thereafter, such a simple descrip-

tion appeared to be insu�cient, hence, authors from [1, 22, 23] proposed a

new system of four equations, where two states of bacteria have been dis-

tinguished: active and inactive ones. Moreover, an additional equation for a

nutrient (substrate) evolution was added. This model was, in fact, a result of

coupling the Keller-Segel equations with a reaction-di�usion system proposed

by Mimura et al. in [33] to describe the morphological diversity of colony

patterns in bacteria Bacillus subtilis. Denoting the density of active bacteria

by u(x, t), the density of inactive bacteria by w(x, t), the density of nutrient

by n(x, t), and the concentration of chemoattractant by c(x, t), all these func-

tions at position x ∈ Ω and time t ∈ [0,∞), the di�usion-chemotaxis-growth

system which we will study in Chapter 4, has the form

ut = ∆u−∇ · (u∇χ(c)) + g(u)nu− b(n)u (1.11)

ct = dc∆c+ αu− βc (1.12)

nt = dn∆n− γg(u)nu (1.13)

wt = b(n)u. (1.14)

System (1.11)�(1.14) is considered in a bounded domain Ω ⊂ Rd with a

su�ciently smooth boundary ∂Ω and is supplemented with the Neumann
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boundary conditions

∂u

∂ν
=
∂c

∂ν
=
∂n

∂ν
= 0 for x ∈ ∂Ω and t > 0, (1.15)

as well as with nonnegative initial data

u(x, 0) = u0(x), c(x, 0) = c0(x),

n(x, 0) = n0(x), w(x, 0) = w0(x)
for x ∈ Ω. (1.16)

The authors of [1] studied problem (1.11)�(1.16) numerically and for some

speci�c functions g, b and χ, they obtained results which were closely related

to biological experiments. It is remarkable especially, that they generated

geometrically di�erent patterns depending only on the initial nutrient con-

centration, as it was done in real-life experiments performed by Budrene

and Berg. Even in the one dimensional case, they observed that, in some

range of n0, bacteria colonies exhibit so-called oscillatory propagating pulse

behaviour.

However, there is still quite little done in the rigorous analysis on problem

(1.11)�(1.16), so far. In the works [22] and [23], the authors proved that in one

dimensional case there exist solutions, which are global-in-time and bounded

uniformly in t > 0. Moreover, for some speci�c choice of functions g, b, and

χ, they found an asymptotic pro�le of such solutions when t→ ∞.

In this work, we generalise one dimensional results from [22, 23], see The-

orem 4.2. Next, we prove the global-in-time existence of solutions of this

model in dimension two and three, under suitable smallness assumptions on

initial conditions, cf. Theorem 4.3. We also show that large solutions of

problem (1.11)�(1.16) may blow up in �nite time. Here, we apply an ap-

proach, which is well-known in the case of the Keller-Segel system modelling

chemotaxis and we prove that solutions to (1.11)�(1.16), where the equation

(1.12) is replaced by its elliptic counterpart, cannot be global-in-time if the

initial mass i.e.
∫
Ω
u0 dx is su�ciently large, see Theorem 4.5 below for more

details.

1.6 Notation and preliminary de�nitions

The goal of this section is to collect some notations systematically used in

this dissertation.
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• C∞
c (Ω) is the set of all smooth and compactly supported functions in

Ω.

• Lp(Ω) is the Lebesgue space of all measurable functions u = u(x) such

that the norm ∥u∥p =
(∫

Ω
|u(x)|p dx

)1/p
is �nite. Moreover W k,p(Ω) is

the Sobolev space i.e.

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k} .

• We used to say that a function, say f = f(t), decays exponentially, if

there exist constants µ > 0 and C > 0 such that |f(t)| ≤ Ce−µt for all

t > 0.

• The letter C corresponds to a generic constant (always independent of

x and t) which may vary from line to line. Sometimes, we write, e.g.

C = C(α, β, γ, ...) when we want to emphasise the dependence of C

on parameters α, β, γ, ... Moreover, for simplicity, from time to time we

avoid to show the dependence of solutions either on x or on t.



Chapter 2

Asymptotic behaviour in a one

dimensional model of interacting

particles

2.1 Main results and comments

In this Chapter we focus on the following one dimensional initial value prob-

lem

ut = εuxx + (u K ′ ∗ u)x for x ∈ R, t > 0, (2.1)

u(x, 0) = u0(x) for x ∈ R, (2.2)

where the interaction kernel K ′ is a given function, the initial datum u0 ∈
L1(R) is nonnegative and ε ≥ 0.

We begin our study of large time behaviour of solution by recalling that,

for ε > 0, the initial value problem (2.1)�(2.2) is known to have a unique and

global-in-time solution for a large class of initial conditions u0 and interaction

kernels K ′. Such results are more-or-less standard and the detailed reasoning

can be found in [26]. In particular, our assumptions (see Theorem 2.1 below)

imply that K ′ ∈ L∞(R), hence the kernel K ′ is mildly singular in the sense

stated in [26, Thm 2.5]. In this case, results from [26] can be summarised

as follows: for every u0 ∈ L1(R) such that u0 ≥ 0, there exists the unique

global-in-time solution u of problem (2.1)�(2.2) satisfying

u ∈ C
(
[0,+∞), L1(R)

)
∩ C

(
(0,+∞), W 1,1(R)

)
∩ C1

(
(0,+∞), L1(R)

)
.

In addition, the condition u0(x) ≥ 0 implies u(x, t) ≥ 0 for all x ∈ R and

t ≥ 0. Moreover, we obtain the conservation of the L1-norm of nonnegative

19
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solutions:

∥u(t)∥L1 =

∫
R
u(x, t) dx =

∫
R
u0(x) dx = ∥u0∥L1 . (2.3)

In Theorem 2.5 below, we pass to the limit ε → 0, to obtain nonnegative

weak solutions of problem (2.1)�(2.2) with ε = 0, for which the conservation

of mass (2.3) holds true as well.

The goal of this work is to study the large time behaviour of solution to

(2.1)�(2.2). First, we state conditions under which these solutions decay as

t→ ∞.

Theorem 2.1 (Decay of Lp norm). Assume that u = u(x, t) is a nonnegative

solution to problem (2.1)�(2.2) with ε > 0, where the interaction kernel has

the form K ′(x) = −A
2
H(x) + V (x), where H is the sign function, A > 0 is a

constant, and the function V satis�es

V ∈ W 1,1(R) with ∥Vx∥L1 < A. (2.4)

Suppose also that u0 ∈ L1(R) is nonnegative. Then for every p ∈ [1,∞] the

following inequality holds true

||u(t)||p ≤ (A− ||Vx||1)
1−p
p ||u0||1/p1 t

1−p
p (2.5)

for all t > 0.

Remark 2.2. Notice that, under assumption (2.4), we have V (x) =
∫ x

−∞ Vy(y) dy.

Hence, we get immediately that V ∈ L∞(R) ∩ C(R), lim|x|→∞ V (x) = 0, and

the following estimate, ∥V ∥∞ ≤ ∥Vx∥1 < A holds true. Consequently, our

assumption on the interaction kernel K ′ imply that K ′ + A
2
H ∈ C0(R) (con-

tinuous and decaying at in�nity functions). This means that the kernel K ′

has a jump at zero exactly as the rescaled sign function −A
2
H and converges

to the constants ±A
2
as x → ∓∞, respectively. In some sense, this means

that the potential K(x) looks like −A
2
|x| at x = 0 and at |x| = ∞.

Remark 2.3. Our assumptions on the kernel K ′(x) imply that interactions

between particles are similar to those in the chemorepulsion motion, namely,

when regions of high chemical concentrations have a repulsive e�ect on par-

ticles. Such a model was studied for example in [13].
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In the next step of this work, we derive an asymptotic pro�le as t → ∞
solutions of (2.1)�(2.2). First, notice that if the large time behaviour of a

solution to problem (2.1)�(2.2) is described by either the heat kernel or the

nonlinear di�usion wave (as e.g. in [25]) then we expect the following decay

rate ||u(t)||p ≤ C t
1−p
2p for all t > 0. Observe, that the function u from

Theorem 2.1 decays faster, hence, its asymptotic behaviour as t→ ∞ should

be di�erent.

From now on, without loss of generality, we assume that
∫
R u(x, t) dx =∫

R u0(x) dx = 1. Indeed, due to the conservation of mass (2.3), it su�ces to

replace u in equation (2.1) by u∫
R u0 dx

and K ′ by K ′(
∫
R u0 dx).

Next, let us put

U(x, t) =

∫ x

−∞
u(y, t) dy − 1

2
, (2.6)

where u(x, t) is the solution of (2.1)�(2.2). Since u = Ux, using the explicit

form of the kernel K ′ (cf. Lemma 2.7 below), we obtain that the primitive

U = U(x, t) satis�es the following equation

Ut = εUxx − AUUx + Ux V ∗ Ux, (2.7)

which can also be considered as a nonlinear and nonlocal perturbation of the

viscous Burgers equation.

Our main result says that the large time behaviour of U is described by a

self-similar pro�le, given by a rarefaction wave, namely, the unique entropy

solution of the Riemann problem for the scalar conservation law

WR
t + AWRWR

x = 0 (2.8)

WR(x, 0) =
1

2
H(x). (2.9)

It is well-known (see e.g. [16]) that this rarefaction wave is given by the

explicit formula

WR(x, t) :=


−1

2
for x ≤ −At

2
,

x

At
for − At

2
< x <

At

2
,

1

2
for x ≥ At

2
.

(2.10)
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Theorem 2.4 (Convergence towards rarefaction waves). Let the assumptions

of Theorem 2.1 hold true. Assume, moreover, that a nonnegative initial

datum u0(x) satis�es∫
R
u0(x) dx = 1, and

∫
R
u0(x)|x| dx <∞. (2.11)

Then, there exists a constant C > 0 independent of ε such that for every

t > 0 and each p ∈ (1,∞] the following estimate hold true

∥U(·, t)−WR(·, t)∥p ≤ Ct−
1
2(1−

1
p) (log(2 + t))

1
2
(1+ 1

p
) , (2.12)

where U = U(x, t) is the primitive of the solution of problem (2.1)�(2.2) given

by (2.6) and WR =WR(x, t) is the rarefaction wave given by (2.10).

Next, we show that the asymptotic formula (2.12) holds also true for weak

solutions of problem (2.1)�(2.2) with ε = 0.

Theorem 2.5. Assume that the kernel K ′ has the properties stated in The-

orem 2.1 and the nonnegative initial condition u0 ∈ L1(R) satis�es (2.11).

Then the initial value problem

Ut = −AUUx + UxV ∗ Ux (2.13)

U(x, 0) = U0(x) =

∫ x

−∞
u0(y) dy −

1

2
(2.14)

has a weak solution U ∈ C
(
R× (0,∞)

)
such that Ux ∈ L∞

loc

(
(0,∞), L∞(R)

)
.

This satis�es problem (2.13)�(2.14) in the following integral sense

−
∫ ∞

0

∫
R
Uφt dx dt−

∫
R
U0(x)φ(x, 0) dx =

A

2

∫ ∞

0

∫
R
U2φx dx dt

+

∫ ∞

0

∫
R
Ux

(
Vx ∗ U

)
φ dx dt

for all φ ∈ C∞
c (R × [0,+∞)). Moreover, this solution satis�es for each

p ∈ (1,∞]

∥U(·, t)−WR(·, t)∥p ≤ Ct−
1
2(1−

1
p) (log(2 + t))

1
2
(1+ 1

p
) , (2.15)

for a constant C > 0 and for all t > 0.

Next, we use the result from Theorems 2.4 and 2.5 to describe the large

time asymptotics of solutions to problem (2.1)�(2.2).
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Corollary 2.6. Let the assumptions either of Theorem 2.1 or Theorem 2.5

hold true. For the solution u = u(x, t) of problem (2.1)�(2.2) with ε ≥ 0 we

de�ne its rescaled version uλ(x, t) = λu(λx, λt) for λ > 0, x ∈ R and t > 0.

Then, for every test function φ ∈ C∞
c (R) and each t0 > 0∫

R
uλ(x, t0)φ(x) dx→ −

∫
R
WR(x, t0)φx(x) dx as λ→ +∞.

In other words, for each t0 > 0, the family of rescaled solutions uλ(x, t0) =

λu(λx, λt0) of problem (2.1)�(2.2) with ε ≥ 0 converges weakly as λ→ ∞ to

the compactly supported self-similar pro�le de�ned as

(
WR

)
x
(x, t0) :=


(At)−1 for |x| < At

2
,

0 for |x| ≥ At

2
.

(2.16)

2.2 Large time asymptotics

In this section, we prove all results stated in Section 2.1. We begin by an

elementary result.

Lemma 2.7. Let H be the sign function. For all φ ∈ W 1,1(R) the following

equality hold true: H ∗ φx = 2φ.

Proof. First, we assume that φ ∈ C∞
c (R). Then

H ∗ φx =

∫
R
H(x− y)φy(y) dy =

∫ x

−∞
φy(y) dy −

∫ ∞

x

φy(y) dy = 2φ(x).

The proof for general φ ∈ W 1,1(R) is completed by a standard approximation

argument.

Now, we are in a position to prove Theorem 2.1 concerning the decay of

the solutions in Lp-spaces.

Proof of Theorem 2.1. Note that by (2.3), we have ∥u(t)∥1 = ∥u0∥1 which

implies (2.5) for p = 1. Hence, we can assume that p > 1.

We multiply equation (2.1) by pup−1 (recall that u is nonnegative), inte-

grate with respect to x over R, and integrate by parts to obtain
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d

dt

∫
R
up dx = −4(p− 1)ε

p

∫
R

[(
up/2

)
x

]2
dx+ (p− 1)

∫
R
upK ′ ∗ ux dx.

The �rst term on the right-hand side (containing ε > 0) is obviously nonpos-

itive, hence, we skip it in our estimates. Using the explicit form of the kernel

K ′ = −A
2
H + V and Lemma 2.7, we rewrite the second term as follows∫
R
upK ′ ∗ ux dx =

(
−A

∫
R
up+1 dx+

∫
R
up Vx ∗ u dx

)
. (2.17)

Notice that a simple computation involving the Hölder and the Young in-

equalities leads to the estimates∣∣∣∣∫
R
up Vx ∗ u dx

∣∣∣∣ ≤ ||Vx ∗ u||p+1||up|| p+1
p

≤ ||Vx||1||u||p+1
p+1. (2.18)

Hence, using (2.17) and (2.18) we get

d

dt

∫
R
u(x, t)p dx ≤ (p− 1) (−A+ ||Vx||1) ||u(t)||p+1

p+1. (2.19)

Moreover, it follows from the Hölder inequality (with the exponents p and
p

p−1
) that∫

R
up dx =

∫
R
u

1
p u

p2−1
p dx ≤

(∫
R
u dx

) 1
p
(∫

R
up+1 dx

) p−1
p
,

which means ∫
R
up+1 dx ≥ ||u0||

−1
p−1

1

(∫
R
up dx

) p
p−1
, (2.20)

because ∥u(t)∥1 = ∥u0∥1. Applying estimate (2.20) to (2.19), we obtain the

following di�erential inequality for
∫
R u

p dx:

d

dt

∫
R
u(x, t)p dx ≤ (p− 1) (−A+ ||Vx||1) ||u0||

− 1
p−1

1

(∫
R
u(x, t)p dx

) p
p−1

.

(2.21)

It is easy to prove that any nonnegative solution of the di�erential inequality

d

dt
f(t) ≤ −Df(t)

p
p−1 ,
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with a constant D > 0, satis�es

f(t) ≤
(

D

p− 1

)1−p

t1−p.

Hence, it follows from (2.21) and from the assumption ∥Vx∥1 < A that

||u(t)||p ≤ (A− ||Vx||1)
1−p
p ||u0||1/p1 t

1−p
p (2.22)

for all t > 0. Finally, passing to the limit p→ ∞ in (2.22), we obtain

||u(t)||∞ ≤ (A− ||Vx||1)−1 t−1

for all t > 0. This completes the proof of Theorem 2.1.

Let us now recall some results on smooth approximations of rarefaction

waves, more precisely, the solution of the following Cauchy problem for the

Burgers equation
Zt − εZxx + AZZx = 0,
Z(x, 0) = Z0(x) =

1
2
H(x).

(2.23)

where A > 0.

Lemma 2.8 (Hattori-Nishihara [18]). Problem (2.23) has a unique, smooth,

global-in-time solution Z(x, t) satisfying

i) −1/2 < Z(x, t) < 1/2 and Zx(x, t) > 0 for all (x, t) ∈ R× (0,∞);

ii) for every p ∈ [1,∞], there exists a constant C = C(p) > 0 independent

of ε > 0 such that

∥Zx(t)∥p ≤ Ct−1+1/p

and

∥Z(t)−WR(t)∥p ≤ Ct−(1−1/p)/2

for all t > 0, where WR(x, t) is the rarefaction wave given by formula (2.10).

Sketch of the proof. All results stated in Lemma 2.8 can be found in

[18] with some additional improvements contained in [27, Sec. 3], and they

are deduced from an explicit formula for smooth approximation of rarefaction

waves. Here, however, we should emphasise that the authors of [18] consider

equation (2.23) with ε = 1 but, by a simple scaling argument, we can extend
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those results for all ε > 0. Indeed, we check that the function f(x, t) =

Z(εx, εt) satis�es ft − fxx + Affx = 0. Hence, by the result from [18] we

have

∥fx(t)∥p ≤ Ct
1−p
p and ∥f(t)−WR(t)∥p ≤ Ct−(1−1/p)/2.

Now, coming back to original variables, we have

ε
p−1
p ∥Zx(·, εt)∥p ≤ C (εt)

1−p
p ε

p−1
p

and so, de�ning the new variable t̃ = εt, we obtain ∥Zx(t̃)∥p ≤ C t̃
1−p
p with

a constant C independent of ε. The second inequality in Lemma 2.8.ii. can

be obtained in a similar way.

�
Next, we study the large time asymptotics of U(x, t) =

∫ x

−∞ u(y, t) dy− 1
2
,

which satis�es equation (2.6). Recall that u = Ux. In the proof of Theo-

rem 2.4, we need the following auxiliary result.

Lemma 2.9. Let u0 satisfy conditions (2.11). Assume that U = U(x, t), de-

�ned by (2.6), is the solution of equation (2.7) supplemented with the initial

condition U0(x) =
∫ x

−∞ u0(y) dy − 1/2 and Z = Z(x, t) is the smooth ap-

proximation of the rarefaction wave, namely, the solution of problem (2.23).

Then, for every t0 > 0 we have

sup
t>t0

1

log(2 + t)
∥U(t)− Z(t)∥1 <∞.

Proof. At the beginning, let us notice that assumption (2.11) on u0 implies

that U0(x) ∈ L1(−∞, 0) and U0(x)−1 ∈ L1(0,∞). Hence, we have U0−Z0 ∈
L1(R).

Denoting R = U − Z and using equations (2.7) and (2.23), we see that

this new function satis�es

Rt = εRxx −
A

2
(U2 − Z2)x + Ux V ∗ Ux.

We multiply this equation by sgnR (in fact, by a smooth approximation of

sgnR) and we integrate with respect to x to obtain

d

dt

∫
R
|R| dx = ε

∫
R
RxxsgnR dx− A

2

∫
R
(U2 − Z2)xsgnR dx

+

∫
R
Ux V ∗ UxsgnR dx.
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The �rst term on the right-hand side of the above equation is nonpositive

because this is the well-known Kato inequality. The second term is equal to

0 because of the following calculations:∫
R
(U2 − Z2)xsgnR dx =

∫
R

(
R2 + 2RZ

)
x
sgnR dx

=

∫
R
2Rx|R| dx+

∫
R
2ZRxsgnR dx+

∫
R
2Zx|R| dx

= −2

∫
R
Zx|R| dx+ 2

∫
R
Zx|R| dx = 0

since
∫
RRx|R| dx = 0. Moreover, using the Young inequality, we have∣∣∣∣∫

R
Ux V ∗ Ux sgnR dx

∣∣∣∣ ≤ ∥Ux V ∗ Ux∥1 ≤ ∥Ux∥∞∥V ∥1∥Ux∥1.

Hence, by the fact that Ux(t) = u(t) and using the decay estimates from

Theorem 2.1 for p = 1 and p = ∞, we get the following di�erential inequality

d

dt
∥R(t)∥1 ≤ Ct−1

which completes the proof of Lemma 2.9.

Now, we are in a position to prove our main result about the convergence

of the primitive of u towards a rarefaction wave.

Proof of Theorem 2.4. Let Z = Z(x, t) be a smooth approximation of the

rarefaction wave from Lemma 2.8. Denote R = Z−U . Hence, by Lemma 2.8

and Theorem 2.1, we have

∥Rx(t)∥∞ = ∥Ux(t)− Zx(t)∥∞ ≤ ∥u(t)∥∞ + ∥Zx(t)∥∞ ≤ C t−1

for a constant C > 0. Moreover, using the Sobolev-Gagliardo-Nirenberg

inequality

∥R∥p ≤ C∥Rx∥
1
2(1−

1
p)

∞ ∥R∥
1
2
(1+ 1

p
)

1 ,

valid for every p ∈ (1,∞] and Lemma 2.9 we have

∥U(t)− Z(t)∥p ≤ Ct−
1
2(1−

1
p) (log(2 + t))

1
2
(1+ 1

p
)

for all t > 0.

Finally, to complete the proof, we use Lemma 2.8 to replace the smooth

approximation Z(x, t) by the rarefaction wave WR(x, t).



28 CHAPTER 2

The proof of Theorem 2.5 relies on a form of the Aubin-Simon compact-

ness result that we recall below.

Theorem 2.10 ([46, Theorem 5]). Let X, B and Y be Banach spaces satisfy-

ing X ⊂ B ⊂ Y with compact embedding X ⊂ B. Assume, for 1 ≤ p ≤ +∞
and T > 0, that

• F is bounded in Lp(0, T ;X),

• {∂tf : f ∈ F} is bounded in Lp(0, T ;Y ).

Then F is relatively compact in Lp(0, T ;B) (and even in C(0, T ;B) if p =

+∞).

Proof of Theorem 2.5. We denote by U ε a solution of equation (2.7) with

ε > 0 supplemented with the initial condition (2.14). The proof follows from

three steps. First, we show that the family

F ≡ {U ε : ε ∈ (0, 1]},

is relatively compact in C([t1, t2], C[−R,R]) for every 0 < t1 < t2 < ∞ and

every R > 0. Next, we show that there exists a function Ū = limε→0 U
ε

which is a weak solution of problem (2.13)�(2.14). Finally, we prove that Ū

satis�es estimate (2.15).

Step 1. Compactness. We apply Theorem 2.10 with p = ∞, F = F , and

X = C1([−R,R]), B = C([−R,R]), Y = W−1,1([−R,R]),

where R > 0 is �xed and arbitrary, and Y is the dual space ofW 1,1
0 ([−R,R]).

Obviously, the embedding X ⊂ B is compact by the Arzela-Ascoli theorem.

First, we show that the sets F and {∂xU ε : ε ∈ (0, 1]} are bounded

subsets of L∞ ([t1, t2], C([−R,R])). Indeed, it follows from the de�nition of

the function U ε, see (2.6), that

|U ε(x, t)| ≤ ∥(U ε)x(·, t)∥1 +
1

2
= ∥u0∥1 +

1

2
. (2.24)

Moreover, using Theorem 2.1 we have

∥(U ε)x(·, t)∥∞ ≤ (A− ∥Vx∥1)−1 t−1. (2.25)

To check the second condition of the Aubin-Simon compactness criterion,

it su�ces to show that there is a positive constant C independent of ε ∈ (0, 1]
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such that supt∈[t1,t2] ∥∂tU
ε∥Y ≤ C. Let us show this estimate by a duality

argument. For every φ ∈ C∞
c ((−R,R)) and t ∈ [t1, t2], by (2.24), (2.25) and

Theorem 2.1, we have∣∣∣∣∫
R
∂tU

ε(t)φ dx

∣∣∣∣ ≤ ∣∣∣∣∫
R
εU ε

x(t)φx dx

∣∣∣∣+ ∣∣∣∣∫
R
AU ε(t)U ε

x(t)φ dx

∣∣∣∣+ ∣∣∣∣∫
R
U ε
x(t)V ∗ U ε

x(t)φ dx

∣∣∣∣
≤ ∥φx∥∞

∫
R
|U ε

x(t)| dx+ A∥U ε(t)∥∞∥φ∥∞
∫
R
|U ε

x(t)| dx+ ∥U ε
x(t)∥2∞∥V ∥1∥φ∥1

≤ ∥φx∥∞∥u0∥1 + A∥u0∥1(∥u0∥1 + 1/2)∥φ∥∞ + (A− ∥Vx∥1)−2t−2
1 ∥V ∥1∥φ∥1.

Hence, the proof of Step 1 is completed.

Step 2. Limit function. By Step 1, for every 0 < t1 < t2 < +∞, the family

{U ε : ε ∈ (0, 1]} is relatively compact in C([t1, t2], C(−R,R)). Consequently,
by a diagonal argument, there exists a sequence of {U εn : εn ∈ (0, 1]} and a

function Ū ∈ C((0,+∞), C(R)) such that

U εn → Ū as εn → 0 in L∞
loc

(
R× (0,+∞)

)
. (2.26)

Moreover, it follows from the estimate (2.25) that, by the Banach-Alaoglu

Theorem,

U εn
x → Ūx as εn → 0

weak-∗ in L∞
loc

(
(0,∞), L∞(R)

)
.

Now, multiplying equation (2.7) by a test function φ ∈ C∞
c (R× [0,+∞))

and integrating the resulting equation over R× [0,∞), we obtain the identity

−
∫ ∞

0

∫
R
U εnφt dx dt−

∫
R
U0(x)φ(x, 0) dx = εn

∫ ∞

0

∫
R
U εnφxx dx dt

+
A

2

∫ ∞

0

∫
R
(U εn)2φx dx dt+

∫ ∞

0

∫
R
U εn
x

(
Vx ∗ U εn

)
φ dx dt.

(2.27)

It is easy to pass to the limit as εn → 0 on the left-hand side of (2.27),

using the Lebesgue dominated convergence theorem. To deal with the term

on the right-hand side we make the following decomposition:∫
R
U εn
x (Vx ∗ U εn)φ dx =

∫
R
U εn
x

(
Vx ∗ (U εn − Ū)

)
φ dx

+

∫
R
U εn
x

(
Vx ∗ Ū

)
φ dx.

(2.28)
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We can estimate the �rst term on the right-hand side of (2.28) as follows:∣∣∣∣∫
R
U εn
x

(
Vx ∗ (U εn − Ū)

)
φ dx

∣∣∣∣ ≤ ∥U εn
x (t)∥∞

∫
R

∣∣Vx ∗ (U εn − Ū)φ
∣∣ dx.

(2.29)

Let us notice that Vx∗(U εn−Ū) tends to zero as εn → 0 by the Lebesgue dom-

inated convergence theorem and it is bounded independently of εn. Hence,

using the Lebesgue dominated convergence theorem and Theorem 2.1, we

deduce that the right-hand side of (2.29) converges to zero. The second term

on the right-hand side of (2.28) obviously converges to
∫
R Ūx

(
Vx ∗ Ū

)
φ dx

by the weak-∗ convergence of U εn
x in L∞(R) since (Vx ∗ Ū)φ ∈ L1(R). This

completes the proof of Step 2.

Step 3. Convergence towards a rarefaction wave. To prove (2.15), we use

the Fatou Lemma and (2.26); we obtain

∥Ū(t)−WR(t)∥p ≤ lim inf
εn→0

∥U εn(t)−WR(t)∥p

for all t > 0.

Now, it is enough to use Theorem 2.4 to estimate the quantity on right-

hand side, since constant C in (2.12) is independent of ε. Hence the proof of

Theorem 2.5 is �nished.

At last, we prove Corollary 2.6.

Proof of Corollary 2.6. First, we express the result stated in Theorems 2.4

and 2.5 in another way. We consider the rescaled family of functions Uλ(x, t) =

U(λx, λt) for all λ > 0. Let us also notice that WR(x, t) is self-similar in the

sense that
(
WR

)λ
(x, t) = WR(x, t) for all x ∈ R, t > 0, λ > 0. Hence,

changing the variables and using Theorem 2.4 and Theorem 2.5 in the case

ε = 0, we obtain

∥Uλ(·, t0)−
(
WR

)λ
(·, t0)∥p = λ−1/p∥U(·, λt0)−WR(·, λt0)∥p ≤

Cλ−1/p(λt0)
− 1

2(1−
1
p) (log(2 + λt0))

1
2(1+

1
p) → 0

as λ → ∞. It means that the family of functions Uλ converge in Lp(R) as
λ→ ∞ towards WR(x, t) for every t0 > 0 and p ∈ (1,∞].

This scaling argument allows us to express the convergence of solutions of

the original problem (2.1)�(2.2) towards a self-similar pro�le. Indeed, let us
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note that since u = Ux, it follows immediately that uλ(x, t) = λu(λx, λt) =

∂xU
λ(x, t). Hence, the weak convergence of uλ towards the distributional

derivative of the rarefaction wave ∂xW
R is an immediate consequence of the

Lebesgue dominated convergence theorem and of Theorem 2.4 for p = ∞
since |Uλ(x, t0)| ≤

∫
R u0(x) dx+

1
2
.



Chapter 3

Stability of solutions to

aggregation equation in bounded

domains

3.1 Assumptions, main results and comments

3.1.1 Stability and instability of homogeneous solutions

In this Chapter we study the following initial-boundary value problem

ut = ∇ · (∇u− u∇K(u)) for x ∈ Ω ⊂ Rd, t > 0, (3.1)

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0, (3.2)

u(x, 0) = u0(x) for x ∈ Ω, (3.3)

where, K(u) = K(u)(x, t) is a linear operator de�ned via the following integral

formula

K(u)(x, t) =

∫
Ω

K(x, y)u(y, t) dy

for certain aggregation kernel K = K(x, y).

Moreover, in this Chapter, we assume the following conditions on the

aggregation kernel

∂K

∂n
(·, y) = 0 on ∂Ω for all y ∈ Ω, (3.4)

∇x

(∫
Ω

K(x, y) dy

)
= 0, for all x ∈ Ω (3.5)
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∥∇xK∥∞,q′ ≡ ess sup
x∈Ω

∥∇xK(x, ·)∥q′ + ess sup
y∈Ω

∥∇xK(·, y)∥q′ <∞

for some q′ ∈ [1,∞].
(3.6)

Remark 3.1. Notice that under the assumptions (3.4), a solution of problem

(3.1)�(3.3) conserves the integral (�mass�) i.e.

∥u(t)∥1 =
∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx = ∥u0∥1 for all t ≥ 0. (3.7)

Indeed, it is su�cient to integrate the equation (3.1) with respect to x and

use identities (3.2) and (3.4). Moreover, this solution remains nonnegative

if the initial condition is so, due to the maximum principle.

Remark 3.2. Note, that assumption (3.5) implies that every constant func-

tion u ≡ M satis�es equation (3.1). In fact, the chemotaxis model (1.3) is

our main motivation to state this assumption. Indeed, if (U, V ) is a station-

ary solution to (1.3) then U is constant if and only if V is constant as well.

It means that, if the kernel K is the Green function of the operator −∆+ aI

then the term ∇K(U) in equation (3.1) for U =M , has to be equal 0 and so,

K satis�es (3.5).

The main goal of this work is to study stability of homogeneous solution

to problem (3.1)�(3.3). More precisely, we look for su�cient conditions for

either stability of constant solutions or their instability. Our result can be

summarised in the following way

• If the homogeneous solution u(x, t) = M ≥ 0 of problem (3.1)�(3.3) is

su�ciently small, then it is asymptotically stable solution in the linear

and nonlinear sense, see Proposition 3.3 and Theorem 3.4 below.

• If the homogeneous solution u(x, t) = M ≥ 0 is su�ciently large, then

there is a large class of aggregation kernels (which include the kernel

coming from chemotaxis system (1.3)), such that u(x, t) = M is a

linearly unstable solution of (3.1)�(3.3).

Thus, we focus on a solution to problem (3.1)�(3.3) in the form

u(x, t) =M + φ(x, t),

where M is an arbitrary constant and φ is a perturbation. Moreover, since∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx =

∫
Ω

M dx =M |Ω| for all t > 0,
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we have that
∫
Ω
φ(x, t) dx = 0 holds for all t ≥ 0. Hence, from equation

(3.1), using assumption (3.5), we obtain the following initial boundary value

problem for the perturbation φ

φt = ∆φ−∇ ·
(
M∇K(φ) + φ∇K(φ)

)
, (3.8)

∂φ

∂n
= 0 for x ∈ ∂Ω, t > 0, (3.9)

φ(x, 0) = φ0(x). (3.10)

We also introduce its linearized counterpart, namely, skipping the term

∇ · (φ∇K(φ)) on the right hand side of (3.8) we obtain

φt = ∆φ−∇ ·
(
M∇K(φ)

)
, (3.11)

∂φ

∂n
= 0 for x ∈ ∂Ω, t > 0, (3.12)

φ(x, 0) = φ0(x). (3.13)

In the sequel, we use the linear operator Lφ = −∆φ+∇ ·
(
M∇K(φ)

)
with

the Neumann boundary conditions, de�ned for all φ, ψ ∈ W 1,2(Ω) via its

associated bilinear form

J(φ, ψ) =

∫
Ω

∇φ · ∇ψ dx−M

∫
Ω

∇K(φ)∇ψ dx. (3.14)

Here, we recall that a constant M is called a linearly asymptotically

stable stationary solution to nonlinear problem (3.1)�(3.3) if the zero solution

is an asymptotically stable solution of the linearized problem (3.11)�(3.13).

Moreover, a constant M is called linearly unstable stationary solution to

nonlinear problem (3.1)�(3.3) if zero is an unstable solution to linearized

problem (3.11)�(3.13).

Proposition 3.3 (Linear stability of constant solutions). Assume, that the

aggregation function K(x, y) satisfy conditions (3.4) and (3.5). If, more-

over, the operator ∇K : L2(Ω) → L2(Ω) given by the form ∇K(φ) =∫
Ω
∇xK(x, y)φ(y) dy is bounded and if

M∥∇K∥L2→L2 <
√
λ1, (3.15)

where λ1 is the �rst nonzero eigenvalue of −∆ on Ω under the Neumann

boundary condition then M is a linearly asymptotically stable stationary so-

lution to the problem (3.1)�(3.3).
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We prove this proposition in Section 3.2. Here, we only emphasise that

this proof allow us to show the nonlinear stability of constant steady states,

under slightly stronger assumptions imposed on the kernel K.

Theorem 3.4 (Nonlinear stability of constant solution). Let the assumptions

of Proposition 3.3 hold true. If moreover ∥∇xK∥∞,2 <∞, then there exists a

positive constant η = η(∇xK,M,Ω) such that for every φ0 ∈ L2(Ω) satisfying

∥φ0∥2 < η and
∫
Ω
φ0(x) dx = 0, the perturbed problem (3.8)�(3.10) has a

solution φ ∈ C([0,∞), L2(Ω)) such that
∫
Ω
φ(x, t) dx = 0 for all t > 0.

Moreover, we have

∥φ(t)∥2 → 0 as t→ ∞.

Next, we discuss instability of constant solutions.

Theorem 3.5 (Instability of constant solutions). Let w1 = w1(x) ≥ 0 be

the normalized eigenfunction of −∆ on Ω under the Neumann boundary

condition corresponding to the �rst nonzero eigenvalue λ1, and such that

∥w1∥2 = 1. Assume that ∥∇K∥L2→L2 < ∞. If moreover, the aggregation

function K(x, y) satisfy∫
Ω

∫
Ω

K(x, y)w1(y)w1(x) dx dy = A > 0, (3.16)

then forM > 1/A the constant solutionM of problem (3.1)�(3.3) is a linearly

unstable stationary solution.

Remark 3.6. Let us notice that the aggregation function K which comes

from chemotaxis model (1.3) satis�es the condition (3.16). Indeed, in this

case, K(x, y) is a fundamental solution of the operator −∆+aI in a bounded

domain supplemented with the Neumann boundary conditions. Thus, the

function

w(x) =

∫
Ω

K(x, y)w1(y) dy

satis�es the following equation

−∆w + aw = w1. (3.17)

After multiplying equation (3.17) by w1 and integrating over Ω and using the

Neumann boundary condition we obtain

−
∫
Ω

∆ww1 dx+ a

∫
Ω

ww1 dx =

∫
Ω

(w1)
2 dx.
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Obviously, by the de�nition of A, we have
∫
Ω
ww1 dx = A. Thus, after

integrating by parts we obtain

−
∫
Ω

w∆w1 dx = 1− aA. (3.18)

Finally, we use the fact that w1 is an eigenfunction of −∆ to get

λ1

∫
Ω

ww1 dx = 1− aA,

which implies that A = 1
a+λ1

> 0.

Remark 3.7. Our stability results on constant steady states corresponds to

the well-known results on the global existence versus blow up of solutions to

Keller-Segel system (1.3). In particular, for general kernels (see De�nition

3.9 below), where solutions of problem (3.1)�(3.3) are global-in-time, we can

still resulting in di�erent asymptotics.

Remark 3.8. Let us mention, that the inviscid aggregation equation (1.9)

in the whole space Rd can be formally considered as a gradient �ow of the

energy functional

E(u) =
1

2

∫
Rd

∫
Rd

K(x− y)u(x)u(y) dx dy

with respect to the Euclidean Wasserstein distance as introduced in [44] and

generalized to a large class of PDEs in [12] and in [11]. We have proved that,

in some sense, if this energy functional on the �rst eigenfunction w1 of −∆

is positive then su�ciently large constant solutions of the system (1.1)-(1.3)

are unstable.

The proofs of Theorems 3.4 and 3.5 are given in Section 3.2.

3.1.2 Existence of solutions

For the completeness of exposition we also study the existence of solution to

(3.1)�(3.3). First, let us introduce terminology analogous to that in [26].

De�nition 3.9. The aggregation kernel K : Ω× Ω → R is called

• mildly singular if ∥∇xK∥∞,q′ <∞ for some q′ ∈ (d,∞];
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• strongly singular if ∥∇xK∥∞,q′ <∞ for some q′ ∈ [1, d] and ∥∇xK∥∞,q′ =

∞ for every q′ > d.

Notice that aggregation kernel taken from the one dimensional chemotaxis

model (1.3) is mildly singular in the sense stated above.

We begin our study of properties of solutions to the initial value problem

(3.1)�(3.3) by showing the existence of solutions depending on the quantity

∥∇xK∥∞,q′ de�ned in (3.6).

First, we show that for mildly singular kernels, solutions to the problem

(3.1)�(3.3) are global in time.

Theorem 3.10 (Global existence for mildly singular kernels). Assume that

there exists q′ ∈ (d,∞] such that ∥∇xK∥∞,q′ <∞ where ∥∇xK∥∞,q′ is de�ned

in (3.6). Denote q = q′

q′−1
∈ [1, d/(d − 1)). Then for every initial condition

u0 ∈ L1(Ω) such that u0(x) ≥ 0 and for every T > 0 problem (3.1)�(3.3) has

a unique mild solution in the space

YT = C([0, T ], L1(Ω)) ∩ {u : C
(
[0, T ], Lq(Ω)

)
, sup

0≤t≤T
t
d
2
(1− 1

q
)∥u∥q <∞}

equipped with the norm ∥u∥YT
≡ sup0≤t≤T ∥u∥1 + sup0≤t≤T t

d
2
(1− 1

q
)∥u∥q.

In the one dimensional case, for certain mildly singular kernels, we show

that solutions to (3.1)�(3.3) are bounded in W 1,2(0, 1) for all t > 0.

Proposition 3.11 (W 1,2-estimates for d = 1). Assume that K ∈ L∞(Ω×Ω)

and

∥D2K(u)∥4 ≤ C̃∥u∥4 (3.19)

for some positive constant C̃. Let u ∈ C([0, T ],W 1,2(0, 1))∩C([0, T ], L1(0, 1))

for some T > 0 be a nonnegative local-in-time solution of problem (3.1)�

(3.3) for some T > 0, with initial datum u0 ∈ L1(0, 1). Then, there exists

C = C(∥u0∥1, ∥∇xK∥∞) independent of T such that

sup
0≤t≤T

∥u(t)∥W 1,2 ≤ C.

Next, we show the local-in-time existence of solutions to (3.1)�(3.3) in

the case of strongly singular kernels.
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Theorem 3.12 (Local existence for strongly singular kernels). Assume that

there exists q′ ∈ [1, d] such that ∥∇xK∥∞,q′ < ∞. Let q ∈ [d/(d − 1),∞]

satisfy 1/q + 1/q′ = 1. Then for every positive u0 ∈ L1(Ω) ∩ Lq(Ω) there

exists T = T (∥u0∥1, ∥u0∥q, ∥∇xK∥∞,q′) > 0 and the unique mild solution of

problem (3.1)�(3.3) in the space

XT = C([0, T ], L1(Ω)) ∩ C([0, T ], Lq(Ω))

equipped with the norm ∥u∥XT
≡ sup0≤t≤T ∥u∥1 + sup0≤t≤T ∥u∥q.

Remark 3.13. Let us mention, that our previous, stability results imply

the global-in time existence of solutions for strongly singular kernels provided

initial data are su�ciently small. More results on the global-in-time solutions

to (3.1)�(3.3) in the whole space Ω = Rd can be found,e.g., in [26].

Remark 3.14. Karch and Suzuki in their work [26] studied the viscous ag-

gregation equation, namely the equation (3.1) considered in the whole space

Rd. They show that there are strongly singular kernels (in the sense similar

to De�nition 3.9), such that some solutions blow up in �nite time. Moreover,

there is a large number of works studying the blow up of solution to chemo-

taxis model (1.3), see e.g. [7, 36, 37, 38, 39] and reference therein, as well

as the review paper by Horstmann [21] for additional references.

3.2 Stability and instability proofs

In our reasoning, we use the following Poincaré inequality

λ1

∫
Ω

ψ2 dx ≤
∫
Ω

|∇ψ|2 dx, (3.20)

which is valid for all ψ ∈ W 1,2(Ω) satisfying
∫
Ω
ψ dx = 0, where λ1 is the �rst

non-zero eigenvalue of −∆ on Ω under the Neumann boundary condition.

Now, we are in the position to prove the Theorem 3.3.

Proof of Proposition 3.3. After multiplying equation (3.11) by φ and inte-

grating over Ω we get

1

2

d

dt
∥φ(·, t)∥22 = −

∫
Ω

|∇φ|2 dx+M

∫
Ω

∇K(φ)∇φ dx.
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Now, using the Cauchy inequality we obtain

1

2

d

dt
∥φ(·, t)∥22 ≤ −1

2

∫
Ω

|∇φ|2 dx+ M2

2

∫
Ω

(∇K(φ))2 dx

≤ −1

2

∫
Ω

|∇φ|2 dx+ M2

2
∥∇K∥2L2→L2

∫
Ω

φ2 dx.

(3.21)

Finally, we apply the Poincaré inequality (3.20) to get the following di�er-

ential inequality

d

dt
∥φ(·, t)∥22 ≤

(
− λ1 +M2∥∇K∥2L2→L2

)
∥φ∥22

which, under assumption (3.15), leads us directly to the exponential decay

of ∥φ(t)∥2 as t→ ∞.

Proof of Theorem 3.4. After multiplying equation (3.8) by φ and integrating

over Ω we get

1

2

d

dt
∥φ∥22 = −J(φ, φ) +

∫
Ω

φ∇K(φ)∇φ dx (3.22)

where J is the bilinear form de�ned in (3.14). In (3.21), we have already got

the inequality

−J(φ, φ) ≤ −1

2

∫
Ω

|∇φ|2 dx+ M2

2
∥∇K∥2L2→L2

∫
Ω

φ2 dx. (3.23)

To estimate the second (nonlinear) term on the right-hand side of (3.22),

we use the ε-Cauchy inequality, as follows∫
Ω

φ∇K(φ)∇φ dx ≤ ε

∫
Ω

(∇φ)2 dx+ 1

4ε

∫
Ω

φ2(∇K(φ))2 dx

≤ ε

∫
Ω

(∇φ)2 dx+ 1

4ε
∥∇K(φ)∥2∞

∫
Ω

φ2 dx

≤ ε

∫
Ω

(∇φ)2 dx+
∥∇xK∥2∞,2

4ε

(∫
Ω

φ2 dx
)2

,

(3.24)

since

∥
∫
Ω

∇xK(·, y)φ(y) dy∥∞ ≤ ess sup
x∈Ω

∥∇xK(x, ·)∥2∥φ∥2 = ∥∇xK∥∞,2∥φ∥2.



40 CHAPTER 3

Applying inequalities (3.23) and (3.24) in (3.22) we obtain

d

dt

∫
Ω

φ2 dx ≤
(
− 1 + 2ε

)∫
Ω

(∇φ)2 dx

+ (M2∥∇K∥2L2→L2)

∫
Ω

φ2 dx+
∥∇xK∥2∞,2

2ε

(∫
Ω

φ2 dx
)2

,

and �nally using the Poincaré inequality (3.20) we get the following di�er-

ential inequality

d

dt
∥φ∥22 ≤

(
λ1(2ε− 1) +M2∥∇K∥2L2→L2

)
∥φ∥22 +

∥∇xK∥2∞,2

2ε
∥φ∥42.

Notice, that under assumption (3.15), we can �nd ε > 0 small enough such

that the term
(
λ1(2ε − 1) +M2∥∇K∥2L2→L2

)
is negative. Thus, the proof

is complete because every nonnegative solution of the di�erential inequality

f ′ ≤ −C1f + C2f
2 with f(t) = ∥φ(t)∥22 and with positive constants C1, C2

and f(0) su�ciently small, decays exponentially to zero.

To study the instability of constant solutions, �rst, we consider eigenval-

ues of the operator L de�ned via its bilinear form (3.14).

Lemma 3.15. Let the operator

Lφ = −∆φ+∇ ·
(
M∇K(φ)

)
(3.25)

supplemented with the Neumann boundary condition be de�ned on W 1,2(Ω)

by the associated bilinear form J(φ, ψ) given in (3.14). Assume that ∇xK ∈
L2(Ω× Ω) satis�es (3.4). Then, the quantity

λ = inf
φ∈W 1,2(Ω)

φ ̸=0,
∫
Ω φ dx=0

J(φ, φ)

∥φ∥22
, (3.26)

is �nite and there exists φ̃ ∈ W 1,2(Ω) such that

λ =
J(φ̃, φ̃)

∥φ̃∥22
.

Moreover, Lφ̃ = λφ̃ in the weak sense.
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Proof. As usual, in (3.26) we may restrict ourselves to the case ∥φ∥2 = 1.

Now, let

A = {φ ∈ W 1,2(Ω) : ∥φ∥2 = 1,

∫
Ω

φ dx = 0}.

Step 1. First we show that J(φ, φ) is bounded from below on A. Repeat-

ing the estimates from the proof of Proposition 3.3 we obtain∣∣∣M ∫
Ω

∇K(φ)∇φ dx
∣∣∣ ≤ 1

2
∥∇φ∥22 +

M2

2
∥∇K∥2L2→L2∥φ∥22.

Hence, for every φ ∈ A we have

J(φ, φ) ≥ 1

2
∥∇φ∥22 −

M2

2
∥∇K∥2L2→L2∥φ∥22 ≥ −M

2

2
∥∇K∥2L2→L2 .

Step 2. Let {φ})n∈N ⊂ A be a minimizing sequence that is

λ = lim
n→∞

J(φn, φn).

We show that φn is bounded inW
1,2(Ω). Since φn is the minimizing sequence,

there exists a constant C such that

C ≥ J(φn, φn) ≥
1

2
∥∇φn∥22 −

M2

2
∥∇K∥2L2→L2 ,

so we obtain

∥∇φn∥22 ≤ 2C +M2∥∇K∥2L2→L2 .

Thus, using the Rellich compactness theorem we have a subsequence, again

denoted by φn, converging to φ̃ strongly in L2(Ω). Moreover, by the Banach-

Alaoglu theorem, we obtain, again up to the passage to a subsequence, also

weak convergence of φn towards to φ̃ in W 1,2(Ω).

Notice, that φ̃ ∈ A. Indeed, by the weak convergence in W 1,2(Ω) we have

that φ̃ ∈ W 1,2(Ω) and by the strong convergence in L2(Ω) the limit function

satisfy ∥φ̃∥2 = 1 and
∫
Ω
φ̃ dx = 0.

Step 3. Now, we show that limn→∞ J(φn, φn) = J(φ̃, φ̃).

First, notice that by the weak convergence of ∇φn in W 1,2(Ω) we have

lim inf
n→∞

∥∇φn∥2 ≥ ∥∇φ̃∥2. (3.27)
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Next, by the strong convergence of φn in L2(Ω) and the fact that ∇K :

L2(Ω) → L2(Ω) is linear and bounded, it is easy to verify that

∇K(φn) → ∇K(φ̃) as n→ ∞ strongly in L2(Ω).

This property, and the weak convergence of φ̃n, again imply that∫
Ω

∇K(φn)∇φn dx→
∫
Ω

∇K(φ̃)∇φ̃ dx as n→ ∞

which by estimate (3.27), together with previous step, completes the proof

of Step 3.

Step 4. Finally, we show that the limit function φ̃ satis�es the following

eigenvalue problem Lφ̃ = λφ̃ in the weak sense, namely

J(φ̃, v) = λ

∫
Ω

φ̃v dx for all v ∈ W 1,2(Ω).

Let us denote

f(t) =
J(φ̃+ εv, φ̃+ εv)∫

Ω
(φ̃+ εv)2 dx

for any v ∈ W 1,2 and ε ∈ R. This function is di�erentiable with respect to

ε near ε = 0 and has the minimum at 0. Hence, its derivative vanishes at

ε = 0, and we get

0 = f ′(0) =
J(φ̃, v)∫
Ω
(φ̃)2 dx

− J(φ̃, φ̃)∫
Ω
(φ̃)2 dx

∫
Ω
φ̃v dx∫

Ω
(φ̃)2 dx

= J(φ̃, v)− λ

∫
Ω

φ̃v dx.

Hence, the proof of Lemma 3.15 is �nished.

Now, we are in the position to prove the Theorem 3.5.

Proof of Theorem 3.5. As a standard practice, we show that under our as-

sumptions, the linear operator L de�ned by the form (3.25) has a negative

eigenvalue λ. Then, the function φ(x, t) = e−λtφ̃(x) with the eigenfunction φ̃

of L corresponding to the eigenvalue λ, is a solution of the linearized problem

(3.11)�(3.13) such that

∥φ(·, t)∥2 = e−λt∥φ̃∥2 → ∞ as t→ ∞.
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To do so, we use the de�nition of an eigenvalue of operator L from Lemma

3.15. In view of (3.26), to prove that λ < 0, it su�ces to show that there

exists φ ∈ W 1,2(Ω) that

J(φ, φ) < 0.

Here, we choose φ(x) = w1(x), where w1 is the normalized eigenfunction of

−∆ on Ω under the Neumann boundary condition and corresponding to the

�rst non-zero eigenvalue λ1. Then, we obtain the following relation

J(w1, w1) =

∫
Ω

(∇w1(x))
2 dx−M

∫
Ω

∫
Ω

∇xK(x, y)w1(y)∇w1(x) dy dx

= λ1

∫
Ω

(w1(x))
2 dx−Mλ1

∫
Ω

∫
Ω

K(x, y)w1(y)w1(x) dy dx.

Now, since λ1 > 0 and
∫
Ω
(w1)

2 dx = 1, using assumption (3.16) and choosing

M > 1/A, we conclude the proof.

3.3 Existence proofs

We construct local-in-time mild solutions of (3.1)�(3.3) which are solutions

of the following integral equation

u(t) = et∆u0 −
∫ t

0

∇e(t−s)∆
(
u∇v

)
(s) ds (3.28)

where et∆ is the Neumann linear heat semigroup on Lp(Ω). Moreover, we

subsequently use estimates of {et∆}t≥0 stated in Lemma A.1.

First, we construct global-in-time solutions in the case of mildly singular

kernel.

Proof of Theorem 3.10. We split the proof into two parts. First we construct

the local-in-time solution to problem (3.1)�(3.3) and later on we show how

to extend this solution to the whole time interval [0, T ], T > 0.

Step 1. Local-in-time solution. Here, we follow the reasoning from [26,

Theorem 2.2]. We construct the local-in-time solution to the equation (3.28),

written as u(t) = et∆u0 +B(u, u)(t) with the bilinear form

B(u, v)(t) = −
∫ t

0

∇e(t−s)∆ ·
(
u∇K(v)

)
(s) ds, (3.29)
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in the space YT . Notice that e
t∆u0 ∈ YT by (A.2). To apply ideas from [26,

Theorem 2.2], one should prove the following estimates of the bilinear form

(3.29).

First, let us notice that by the Minkowski inequality we have that

∥∇K(v)∥q′ ≤ ∥
∫
Ω

|∇xK(·, y)|v(y) dy∥q′ ≤
∫
Ω

∥∇xK(·, y)∥q′ |v(y)| dy

≤ ∥∇xK∥∞,q′∥v∥1.
(3.30)

Now, for every u, v ∈ YT , using (A.3) combined with relation (3.30) we obtain

∥B(u, v)(t)∥1 ≤ C

∫ t

0

(t− s)−1/2∥u∇K(v)(s)∥1 ds

≤ C

∫ t

0

(t− s)−1/2∥u(s)∥q∥∇K(v)(s)∥q′ ds

≤ C∥∇xK∥∞,q′

∫ t

0

(t− s)−1/2∥u(s)∥q∥v(s)∥1 ds.

Therefore, by the argument used in [26] we obtain

∥B(u, v)(t)∥1 ≤ CT
1
2
(1−d(1− 1

q
))∥∇xK∥∞,q′∥u∥YT

∥v∥YT
(3.31)

where 1
2
(1− d(1− 1

q
)) > 0.

In a similar way, we prove the following Lq-estimate

t
d
2
(1− 1

q
)∥B(u, v)(t)∥q ≤ Ct

d
2
(1− 1

q
)

∫ t

0

(t− s)−1/2∥u∇K(v)(s)∥q ds

≤ Ct
d
2
(1− 1

q
)

∫ t

0

(t− s)−1/2∥u∥q∥∇K(v)(s)∥∞ ds

≤ C∥∇xK∥∞,q′t
d
2
(1− 1

q
)

∫ t

0

(t− s)−1/2∥u(s)∥q∥v(s)∥q ds

since

∥
∫
Ω

∇xK(·, y)v(y) dy∥∞ ≤ ess sup
x∈Ω

∥∇xK(x, ·)∥q′∥v∥q.

Again, by the argument used in [26] we obtain

t
d
2
(1− 1

q
)∥B(u, v)(t)∥q ≤ CT

1
2
(1−d(1− 1

q
))∥∇xK∥∞,q′∥u∥YT

∥v∥YT
. (3.32)
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By inequalities (3.31) and (3.32) we obtain the following estimate of the

bilinear form

∥B(u, v)∥YT
≤ CT

1
2
(1−d(1− 1

q
))∥∇xK∥∞,q′∥u∥YT

∥v∥YT
.

Hence, choosing T > 0 such that 4CT
1
2
(1−d(1− 1

q
))∥∇xK∥∞,q′∥u0∥1 < 1, we

obtain a solution in YT by [26, Lemma 3.1].

Step 2. Global solution. Now, it su�ces to follow a standard procedure

which consists in applying repeatedly the previous step to equation (3.1)

supplemented with the initial datum u(x, kT ) to obtain a unique solution

on the interval [kT, (k + 1)T ] for every k ∈ N. Notice, that we can perform

this procedure since the local existence time T depends only on ∥u0∥1 and

∥∇xK∥∞,q′ which implies that it does not change for all nonnegative u0 ∈
L1(Ω) with the same controlled L1-norm, see Remark 3.1.

Next, we show that in one dimensional case, all solutions u = u(t) are

bounded in Lp for every p ∈ [1,∞].

Proof of Proposition 3.11. First we estimate ∥u(t)∥2. In order to do that we

multiply equation (3.1) by u and integrate over [0, 1] to obtain

1

2

d

dt

∫ 1

0

u2 dx = −
∫ 1

0

(ux)
2 dx+

∫ 1

0

u(∂xK(u))ux dx. (3.33)

Applying the Cauchy inequality to the second term in the right hand-side of

equation (3.33) we get

1

2

d

dt

∫ 1

0

u2 dx ≤ −1

2

∫ 1

0

(ux)
2 dx+

1

2

∫ 1

0

u2(∂xK(u))2 dx

≤ −1

2

∫ 1

0

(ux)
2 dx+

∥u0∥21∥∇xK∥2∞
2

∫ 1

0

u2 dx.

(3.34)

Now, adding the term ∥u(t)∥22 to the both sides of (3.34) we obtain

d

dt
∥u(t)∥22 + ∥u(t)∥2W 1,2 ≤ (1 + ∥u0∥21∥∇xK∥2∞)∥u(t)∥22.

Now, we use the following Gagliardo-Nirenberg-Sobolev inequality ∥u∥62 ≤
C∥u∥2W 1,2∥u∥41, and the conservation of the integral (3.7) to get

d

dt
∥u(t)∥22 + C1

(
∥u(t)∥22

)3

≤ C2∥u(t)∥22,
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with positive constants C1 = C1(∥u0∥1) and C2 = C2(∥u0∥1, ∥∇xK∥∞).

We leave for the reader the proof that any nonnegative solution of the

di�erential inequality f ′ ≤ −Cf 3+Cf is bounded, which gives us the bound-

edness of ∥u(t)∥2 for all t > 0.

In order to get the boundedness of ∥ux(t)∥2 is also bounded we multiply

equation (3.1) by uxx and integrate over [0, 1] to obtain

1

2

d

dt

∫ 1

0

(ux)
2 dx = −

∫ 1

0

(uxx)
2 dx+

∫ 1

0

(u∂xK(u))xuxx dx.

Now, we use the Cauchy inequality as it was in (3.33) and obtain

1

2

d

dt

∫ 1

0

(ux)
2 dx ≤ −1

2

∫ 1

0

(uxx)
2 dx+

1

2

∫ 1

0

((u∂xK(u))x)
2 dx

and thus we have

d

dt

∫ 1

0

(ux)
2 dx ≤ −

∫ 1

0

(uxx)
2 dx+

∫ 1

0

(ux∂xK(u))2 dx

+ 2

∫ 1

0

uux∂xK(u)∂xxK(u) dx+

∫ 1

0

(u∂xxK(u))2 dx.

(3.35)

To deal with the second integral in the right-hand side of (3.35) we use

conservation of mass and boundedness of ∂xK(u) to get∫ 1

0

(ux∂xK(u))2 dx ≤ ∥∇xK∥2∞∥u0∥21
∫ 1

0

(ux)
2 dx. (3.36)

Moreover, using the Cauchy inequality we have∫ 1

0

uux∂xK(u)∂xxK(u) dx ≤ ∥∇xK∥∞∥u0∥1
∫ 1

0

uux∂xxK(u) dx

≤ 1

2
∥∇xK∥2∞∥u0∥21

∫ 1

0

(ux)
2 dx+

1

2

∫ 1

0

u2(∂xxK(u))2.

(3.37)

To deal with the last term in the right-hand side of (3.35) we use the

Schwarz inequality and assumption (3.19) to get∫ 1

0

(u∂xxK(u))2 dx ≤ ∥u∥24∥∂xxK(u)∥24 ≤ C̃∥u∥44. (3.38)
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Applying inequalities (3.36)�(3.38) to (3.35) we obtain

d

dt

∫ 1

0

(ux)
2 dx ≤ −

∫ 1

0

(uxx)
2 dx+ 2∥∇xK∥2∞∥u0∥21

∫ 1

0

(ux)
2 dx

+2C̃

∫ 1

0

u4 dx.

(3.39)

To deal with the �rst term on the right-hand side of (3.39) we use the

following Gagliardo-Nirenberg-Sobolev inequality ∥ux∥42 ≤ C∥ux∥2W 1,2∥u∥22
and the boundedness of ∥u∥2 just proved, to get relation

−∥uxx∥22 ≤ −C∥ux∥42 + ∥ux∥22. (3.40)

Now, we use the following Gagliardo-Nirenberg-Sobolev inequality ∥u∥24 ≤
C∥u∥W 1,2∥u∥1 and the conservation of the integral (3.7) to get

∥u∥44 ≤ C∥u∥2W 1,2∥u0∥21 ≤ C1∥ux∥22 + C2 (3.41)

since ∥u∥2 is bounded.
Using relations (3.40) and (3.41) in (3.39) we obtain

d

dt

∫ 1

0

(ux)
2 dx ≤ −C1

(∫ 1

0

(ux)
2 dx

)2

+ C2

∫ 1

0

(ux)
2 dx+ C3

for constants C1, C2 = C2(C̃, ∥u0∥1, ∥∇xK∥∞) and C3 = C3(C̃, ∥u0∥1). The
proof is completed by a similar argument which was used to show the bound-

edness of ∥u(t)∥2 for all t > 0.

Finally, we prove the local-in-time existence of solutions in the case when

K is strongly singular.

Proof of Theorem 3.12. We assume now, that q′ ∈ [1, d]. Again notice that

et∆u0 ∈ XT since by (A.2) we have

∥et∆u0∥XT
≤ C(∥u0∥1 + ∥u0∥q).

Next, for every u, v ∈ YT , we get

∥B(u, v)(t)∥1 ≤ C

∫ t

0

(t− s)−1/2∥u∇K(v)(s)∥1 ds

≤ C

∫ t

0

(t− s)−1/2∥u(s)∥q∥∇K(v)(s)∥q′ ds

≤ C∥∇xK∥∞,q′

∫ t

0

(t− s)−1/2∥u(s)∥q∥v(s)∥1 ds

≤ CT 1/2∥∇xK∥∞,q′∥u∥XT
∥v∥XT
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where C is a positive constant.

To deal with the Lq-norm of B(u, v) we proceed similarly

∥B(u, v)(t)∥q ≤ C

∫ t

0

(t− s)−1/2∥u∇K(v)(s)∥q ds

≤ C∥∇xK∥∞,q′

∫ t

0

(t− s)−1/2∥u(s)∥q∥v(s)∥q ds

≤ CT 1/2∥∇xK∥∞,q′∥u∥XT
∥v∥XT

.

Summing up these inequalities, we obtain the following estimate of the bi-

linear form

∥B(u, v)∥XT
≤ CT 1/2∥∇xK∥∞,q′∥u∥XT

∥v∥XT
.

Hence, choosing T > 0 such that 4CT 1/2∥∇xK∥∞,q′(∥u0∥1 + ∥u0∥q) < 1, we

obtain the solution in XT by [26, Lemma 3.1].



Chapter 4

Mathematical properties of

solutions to the model of

formation chemotactic E. coli

colonies

4.1 Results and comments

In this Chapter we focus on the following initial-boundary value problem

ut = ∆u−∇ · (u∇χ(c)) + g(u)nu− b(n)u (4.1)

ct = dc∆c+ αu− βc (4.2)

nt = dn∆n− γg(u)nu (4.3)

wt = b(n)u. (4.4)

System (4.1)�(4.4) is considered in a bounded domain Ω ⊂ Rd with a su�-

ciently smooth boundary ∂Ω, and is supplemented with the Neumann bound-

ary conditions

∂u

∂ν
=
∂c

∂ν
=
∂n

∂ν
= 0 for x ∈ ∂Ω and t > 0, (4.5)

as well as with nonnegative initial data

u(x, 0) = u0(x), c(x, 0) = c0(x),

n(x, 0) = n0(x), w(x, 0) = w0(x)
for x ∈ Ω. (4.6)

We begin by formulating assumptions on all coe�cients and functions in

(4.1)�(4.6).

49
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Standing Assumptions: The di�usion coe�cients dc > 0 and dn > 0 in

(4.2)�(4.3) are constant. The coe�cients α > 0, β > 0, γ > 0 in equations

(4.2)�(4.3) also denote given constants. Moreover, we impose the following

assumptions on the functions g, b, χ ∈ C1([0,∞)):

(i) g(0) = 0 and g = g(s) is increasing for s > 0 and bounded with

G0 ≡ sups≥0 g(s);

(ii) b(0) = B0 > 0 and b = b(s) is decreasing for s > 0 and nonnegative;

(iii) χ′ ∈ L∞([0,∞)).

First we show that, for all su�ciently regular initial conditions, problem

(4.1)�(4.6) has a unique local-in-time solution. Moreover, this solution is

nonnegative if initial conditions (4.6) are nonnegative. This is more-or-less

standard reasoning which we postpone to Section 4.2 (see Theorems 4.6 and

4.8). In this work, we focus mainly on the behaviour of nonnegative solutions

to problem (4.1)�(4.6) for large values of time.

First, we notice that if initial conditions (4.6) are independent of x,

namely, if

u0(x) = ū0, c0(x) = c0, n̄0(x) = n̄0, w0(x) = w0, (4.7)

for certain constants ū0, c0, n̄0, w0 ∈ [0,∞), then the corresponding solution

is independent of x, as well. This property is an immediate consequence of

the uniqueness of solution to problem (4.1)�(4.6). The following theorem

describes the large time behaviour of such nonnegative, space homogeneous

solutions.

Theorem 4.1. Let Standing Assumptions are satis�ed. For every nonnega-

tive, constant initial condition (4.7), the corresponding solution(
ū(t), c̄(t), n̄(t), w̄(t)

)
to problem (4.1)�(4.6) is global-in-time and converges exponentially towards

the constant vector (0, 0, n̄∞, w̄∞) for some n̄∞ ≥ 0 and w̄∞ ≥ 0 depending

on initial conditions.

This theorem is proved in Section 4.3 by analysing the phase portrait of

the corresponding system of ordinary di�erential equations, see (4.18)�(4.21)

below. In Section 4.3, we also study a large time behaviour of �mass" of
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space inhomogeneous solutions, and we show in Theorem 4.10 below, that

the vector(∫
Ω

u(x, t) dx,

∫
Ω

c(x, t) dx,

∫
Ω

n(x, t) dx,

∫
Ω

w(x, t) dx

)
behaves for large values of time like a space homogeneous solution.

Next, we consider problem (4.1)�(4.6) in the one dimensional case and

we show that all solutions corresponding to su�ciently regular, nonnegative

initial conditions are global-in-time and converge uniformly towards certain

steady states. This result has been already proved in [22, 23] for problem

(4.1)�(4.6) with particular functions g, b and χ. Here, however, we propose

a di�erent approach which allows us to consider more general nonlinearities.

Theorem 4.2. Assume that d = 1 and Ω ⊂ R is an open and bounded

interval. Let the constants α, β, γ and the functions g, b and χ satisfy

Standing Assumptions. For every initial condition u0, n0, w0 ∈ L∞(Ω) and

c0 ∈ W 1,∞(Ω), the corresponding solution (u, c, n, w) to problem (4.1)�(4.6)

exists for all t > 0. Moreover, there exists a constant n∞ ≥ 0 and a nonneg-

ative function w∞ ∈ L∞(Ω) such that(
u(x, t), c(x, t), n(x, t), w(x, t)

) t→∞−−−→ (0, 0, n∞, w∞(x))

exponentially in L∞(Ω).

An analogous result holds true in higher dimensions under a smallness

assumption on initial conditions.

Theorem 4.3. Let d ∈ {2, 3} and (u, c, n, w) be a nonnegative local-in-time

solution to problem (4.1)�(4.6) with the parameters satisfying Standing As-

sumptions. Fix, p0 ∈ (d
2
, d
d−2

). There exist ε > 0 such that if

max(∥u0∥p0 , ∥n0∥1, ∥∇c0∥2p0) < ε,

then the solution (u, c, n, w) exist for all t > 0 and satis�es

sup
t>0

∥u(t)∥∞ <∞. (4.8)

Moreover, there exist a constant n∞ ≥ 0 and a nonnegative function w∞ ∈
L∞(Ω) such that(

u(x, t), c(x, t), n(x, t)
) t→∞−−−→ (0, 0, n∞, w∞(x)) (4.9)

exponentially in L∞(Ω).



52 CHAPTER 4

Remark 4.4. Because of methods used in the proof of Theorem 4.3, we have

to limit ourselves to the dimension d ∈ {2, 3} (note that the interval (d
2
, d
d−2

)

is nonempty only in this case). Obviously, this is not a constraint from the

point of view of application. In Remark 4.15 below, we explain how to show

an analogous result for d > 3.

There is a natural question if the smallness assumptions in Theorem 4.3

are really necessary to show the global-in-time existence of nonnegative solu-

tions to problem (4.1)�(4.6) and their exponential convergence toward steady

states as in (4.9). We conjecture that our Standing Assumptions are not suf-

�cient to show such a claim. Here, we use an idea, which is well-known from

the study of the Keller-Segel model of chemotaxis. We show that solutions to

(4.1)�(4.6) in two dimensions and where the parabolic equation for c = c(x, t)

is replaced by its elliptic counterpart, may blow up in �nite time.

Thus, we focus on the following system

ut = ∆u− χ0∇ · (u∇c) + g(u)nu− b(n)u (4.10)

0 = ∆c+ u− c (4.11)

nt = ∆n− γg(u)nu (4.12)

in a bounded domain Ω ⊂ R2, supplemented with the Neumann boundary

conditions

∂u

∂ν
=
∂c

∂ν
=
∂n

∂ν
= 0 for x ∈ ∂Ω and t > 0, (4.13)

and with nonnegative initial data

u(x, 0) = u0(x), c(x, 0) = c0(x), n(x, 0) = n0(x). (4.14)

Compared problem (4.1)�(4.6) we now consider a linear function χ(c) =

χ0c with a constant χ0 > 0. The functions g = g(u), b = b(n) and the

constant γ satisfy Standing Assumptions. Moreover, we set α = β = dc =

dn = 1 and we skip equation (4.4) on the function w because these constants

and this function do not play any role in our reasoning.

By a standard reasoning, completely analogous to that one in Section 4.2,

one can show that problem (4.10)�(4.14) has a local-in-time nonnegative

solution. In the following theorem, we show that some of those solutions

cannot be extended for all t > 0.
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Theorem 4.5. Let d=2 and let (u, c, n) be a local-in-time nonnegative and

classical solution of problem (4.10)�(4.14). Assume that

M0 =

∫
Ω

u0(x) dx >
8π

χ0

.

For every q ∈ Ω there exists ε(q) > 0 such that if
∫
Ω
u0(x)|x− q|2 dx < ε(q)

then the solution (u, c, n) cannot be extended to a global one.

4.2 Local existence of nonnegative solutions

Let us �rst show that the initial-boundary value problem (4.1)�(4.6) has a

local-in-time, unique, nonnegative and regular solution. This is more-or-less

standard reasoning and we sketch it only.

As a standard practice, local-in-time solutions may be obtained via the

Banach �xed point argument applied to the Duhamel formulation of problem

(4.1)�(4.6) as the following integral equations

u(t) = e∆tu0 +

∫ t

0

∂xe
∆(t−s)u(s)∇χ(c(s)) ds

+

∫ t

0

e∆(t−s)u(s)(g(u)n− b(n))(s) ds,

(4.15)

c(t) = e(∆−β)tc0 + α

∫ t

0

e(∆−β)(t−s)u(s) ds, (4.16)

n(t) = e∆tn0 − γ

∫ t

0

e∆(t−s)g(u(s))n(s)u(s) ds. (4.17)

Such an approach has been applied in several works on systems of reaction�

di�usion equations, see the classical monographs by Henry [19], Rothe [45]

and, more recently, by Yagi [49]. To recall such a result from [49], we intro-

duce the following spaces

H2
N(Ω) = {u ∈ W 1,2(Ω) :

∂u

∂ν
= 0 on ∂Ω},

H4
N2(Ω) = {u ∈ H2

N(Ω) : ∆u ∈ H2
N(Ω)}.

Theorem 4.6 (Local-in-time solutions). Let Standing Assumptions hold true.

For every initial datum (u0, c0, n0, w0) ∈ L2(Ω) ×H2
N(Ω) × L2(Ω) × L∞(Ω),



54 CHAPTER 4

there exists T > 0 such that problem (4.1)�(4.6) possesses a unique local-in-

time solution satisfying

u ∈ C((0, T ];H2
N(Ω)) ∩ C([0, T ];L2(Ω)) ∩ C1((0, T ];L2(Ω)),

c ∈ C((0, T ];H4
N2(Ω)) ∩ C([0, T ];H2

N(Ω)) ∩ C1((0, T ];H2
N(Ω)),

n ∈ C((0, T ];H2
N(Ω)) ∩ C([0, T ];L2(Ω)) ∩ C1((0, T ];L2(Ω)),

w ∈ C1([0, T ];L∞(Ω)).

For the proof of this theorem, it su�ces to apply a construction of local-in-

time solutions to an abstract semilinear evolution equation in the monograph

[49, Ch. 4 and Ch. 12, Sec. 1.2].

Remark 4.7. The local-in-time solution from Theorem 4.6 may be continued

to global-in-time provided we �nd suitable a priori estimates on its norms,

see [49, Ch. 4, Sec. 1.4].

Theorem 4.8 (Nonnegativity). If u0 ≥ 0, c0 ≥ 0, n0 ≥ 0, w0 ≥ 0 al-

most everywhere, then, the local-in-time solution obtained in Theorem 4.6 is

nonnegative for all 0 < t < T .

Proof. We employ a standard truncation method. Let h = h(u) be a cuto�

function such that

h(u) :=


1

2
u2 for −∞ < u < 0,

0 for 0 ≤ u <∞.

Then, the function ψ(t) =
∫
Ω
h(u(t)) dx is continuously di�erentiable and

ψ(0) = 0 for nonnegative u0. Following the reasoning in [49, Ch. 12, Sec. 1.3]

one may show that ψ′(t) ≤ Cψ(t) for all t ∈ [0, T ]. Then, ψ(0) = 0 implies

ψ(t) ≡ 0 and consequently u(t) ≥ 0 for all t ∈ [0, T ]. An analogous reasoning

should be applied to the functions c(t) and n(t). Moreover, now, it is clear

that by equation (4.4) w(t) ≥ 0 for all t ∈ [0, T ] if u is nonnegative.

Remark 4.9. Notice, that applying the maximum principle to equation (4.3)

with γg(u)u ≥ 0 and n0 ≥ 0, we may show that

0 ≤ n(x, t) ≤ n0(x) for all x ∈ Ω, t ∈ [0, T ].

In particular, for each p ∈ [1,∞], we have ∥n(t)∥p ≤ ∥n0∥p for all t ∈ [0, T ].
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4.3 Space homogeneous solutions and large time

behaviour of mass

Proof of Theorem 4.1. Obviously, the chemotactic term −∇ · (u∇χ(c)) as

well as the terms in equations (4.1)�(4.4) containing Laplacian disappear in

the case of x-independent solutions. Hence, we focus on the following system

of ordinary di�erential equations

d

dt
ū = g(ū)n̄ū− b(n̄)ū (4.18)

d

dt
c̄ = αū− βc̄ (4.19)

d

dt
n̄ = −γg(ū)n̄ū (4.20)

d

dt
w̄ = b(n̄)ū. (4.21)

It is clear that we should begin with the analysis of the �rst and the third

equation

d

dt
ū = g(ū)n̄ū− b(n̄)ū (4.22)

d

dt
n̄ = −γg(ū)n̄ū, (4.23)

where the vector (0, n̄∞) is a steady state for each nonnegative constant n̄∞.

Here, we notice that, by a standard reasoning, every solution (ū(t), n̄(t)) of

(4.22)�(4.23) which starts in the �rst quadrant (ū > 0, n̄ > 0) at t = 0 has to

remain in this quadrant of the (ū, n̄)-plane for all future times (in fact, this

is also proved in Theorem 4.8, below). Observe also that, by equation (4.23)

and by Standing Assumptions, the derivative d
dt
n̄ is always nonpositive in

the �rst quadrant.

Now, we split the �rst quadrant into two regions, where d
dt
ū has a �xed

sign, in the following way. Since g is a bounded and increasing function, it

has a limit G0 = lims→∞ g(s). Thus, the bijection g−1 : [0, G0) → [0,∞) is

an increasing function and the equation g(ū)n̄ū − b(n̄)ū = 0 for ū > 0, can

be written as ū = f(n̄) ≡ g−1(b(n̄)/n̄). By properties of the functions g and

b, we immediately obtain that f is a decreasing function such that

f(n̄) → 0 as n→ ∞ and f(n̄) → +∞ as n→ N0,
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ū

n̄N0

f(n̄)

Region II

d

dt ū > 0, d

dt n̄ < 0

Region I

d

dt ū < 0, d

dt n̄ < 0

6

-???? ? ? ? ?

Figure 4.1: Phase portrait of system (4.22)�(4.23) with g(u) = u4

74+u4 and

b(n) = 10
1+n

7
.

where the constant N0 > 0 is de�ned by the equation b(N0)
N0

= G0, see Fig-

ure 4.1. The curve ū = f(n̄) divides the �rst quadrant of the (ū, n̄)-plane

into two regions, where d
dt
ū < 0 in region I and d

dt
ū > 0 in region II.

For every (ū(0), n̄(0)) in region I, the functions n̄(t) and ū(t)) are non

increasing, hence, limt→∞(ū(t), n̄(t)) = (0, n̄∞) for some n̄∞ ≥ 0. In fact, this

is an exponential convergence because, for a solution (ū(t), n̄(t)) in region I

we have d
dt
ū ≤

(
g(ū(0))n̄(0)− b(n̄(0))

)
ū, where g(ū(0))n̄(0)− b(n̄(0)) < 0 by

properties of the functions g and b. Moreover, by equation (4.23), we have

that n̄∞ = n̄0 − γ
∫∞
0
g(ū(s))n̄(s)ū(s) ds. Hence

|n̄(t)− n̄∞| = γ

∫ ∞

t

g(ū(s))n̄(s)ū(s) ds ≤ C

∫ ∞

t

ū(s) ds→ 0

exponentially as t→ ∞, due to exponential decay of ū(t).

Now, let us prove that if a trajectory starts in region II, then this has

to enter region I. Indeed, if we suppose that it is not the case, and we have

ū(t) ≥ ū(0) for all t > 0. Then, from equation (4.23) we have that n̄t ≤
−γg(ū(0))ū(0)n̄ and so n̄(t) ≤ n̄(0)e−t(γg(ū(0))ū(0)) → 0 as t → ∞ which

leads to a contradiction. Thus, we have proved that (ū(t), n̄(t)) → (0, n̄∞)

exponentially as t→ ∞.

Let us now describe the large time behaviour of c̄(t) and w̄(t). Solv-

ing equation (4.19) with respect to c̄ = c̄(t), we may easily show that
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limt→∞ c̄(t) = 0 exponentially, using exponential decay of ū(t). Finally, we

have

lim
t→∞

w̄(t) = w̄0 +

∫ ∞

0

b(n̄(s))ū(s) ds ≡ w̄∞, (4.24)

where the quantity on the right-hand side is �nite and positive, because

b(n̄(t)) is bounded for t > 0, and ū(t) decays exponentially.

Now, we consider solutions of problem (4.1)�(4.6) with nonconstant initial

conditions and we prove a similar result to the one in Theorem 4.1 on the

large time behaviour of the integrals
∫
Ω
u(x, t) dx,

∫
Ω
c(x, t) dx,

∫
Ω
n(x, t) dx

and
∫
Ω
w(x, t) dx, which correspond to masses with the densities u, c, n and

w, respectively.

Theorem 4.10. Assume that a nonnegative solution (u, c, n, w) of problem

(4.1)�(4.6) exists for all t > 0. Let the Standing Assumptions hold true.

Then ∫
Ω

u(t) dx→ 0 and

∫
Ω

c(t) dx→ 0 as t→ ∞,

and there are constants n∞ > 0 and w∞ > 0 such that∫
Ω

n(t) dx→ n∞ and

∫
Ω

w(t) dx→ w∞ as t→ ∞.

Proof. First, integrating equations (4.1)�(4.4) with respect to x, we obtain

d

dt

∫
Ω

u dx =

∫
Ω

g(u)nu dx−
∫
Ω

b(n)u dx (4.25)

d

dt

∫
Ω

c dx = α

∫
Ω

u dx− β

∫
Ω

c dx (4.26)

d

dt

∫
Ω

n dx = −γ
∫
Ω

g(u)nu dx (4.27)

d

dt

∫
Ω

w dx =

∫
Ω

b(n)u dx. (4.28)

Since, d
dt

(∫
Ω
u(t) dx+ 1

γ

∫
Ω
n(t) dx+

∫
Ω
w(t) dx

)
= 0, we get the conserva-

tion of mass in the following sense∫
Ω

u(t) dx+
1

γ

∫
Ω

n(t) dx+

∫
Ω

w(t) dx =

∫
Ω

u0 dx+
1

γ

∫
Ω

n0 dx+

∫
Ω

w0 dx,

(4.29)
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for all t > 0. In particular, since all functions are nonnegative, we have∫
Ω

u(x, t) dx ≤
∫
Ω

u0 dx+
1

γ

∫
Ω

n0 dx+

∫
Ω

w0 dx for all t > 0. (4.30)

Now, we improve this estimate by adding equation (4.25) to equation

(4.27) multiplied by γ−1 and integrating resulting equation over [0, t] to ob-

tain the relation∫
Ω

u(t) + γ−1n(t) dx =

∫
Ω

u0 + γ−1n0 dx−
∫ t

0

∫
Ω

b(n(s))u(s) dx ds, (4.31)

which by positivity of b and u implies that∫
Ω

u(t) dx ≤
∫
Ω

u0 dx+
1

γ

∫
Ω

n0 dx. (4.32)

Next, we observe that, since g(u)nu ≥ 0, it follows from equation (4.27)

that
∫
Ω
n(t) dx is nonincreasing and since it is also bounded from below, the

following �nite limit exists

lim
t→∞

∫
Ω

n(t) dx = n∞ > 0. (4.33)

Now, since b(n)u ≥ 0, equation (4.31) implies that the mapping t 7→∫
Ω
u(t) + γ−1n(t) dx is also nonincreasing, hence, it has a limit as t → ∞.

Consequently, using (4.33), we conclude that there exists a constant u∞ ≥ 0

such that

lim
t→∞

∫
Ω

u(t) dx = u∞.

Moreover, since
∫
Ω
u(t) + γ−1n(t) dx is bounded for t ≥ 0, identity (4.31)

implies that b(n)u ∈ L1
(
(0,∞);L1(Ω)

)
. However, since b(n) ≥ b(∥n0∥∞) >

0, it follows that

u ∈ L1((0,∞);L1(Ω)). (4.34)

Consequently, we have u∞ = 0.

Since b(n)u ∈ L1
(
(0,∞), L1(Ω)

)
we obtain from equation (4.28)

lim
t→∞

∫
Ω

w(t) dx ≡
∫
Ω

w0 dx+

∫ ∞

0

∫
Ω

b(n)u dx ds.

Finally, limt→∞
∫
Ω
c(t) dx = 0 due to equation (4.26) because limt→∞ ∥u(t)∥1 =

0. This completes the proof of Theorem 4.10.
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Remark 4.11. Under the following assumption

G0∥n0∥∞ − b(∥n0∥∞) < 0,

where b(∥n0∥∞) = infn b(n) and G0 = supu g(u), we obtain the exponential

decay of
∫
Ω
u(x, t) dx. This is an immediate consequence of equation (4.25)

and the estimate

g(u)nu− b(n)u ≤ (G0∥n0∥∞ − b(∥n0∥∞))u < 0,

since n(x, t) ≤ ∥n0∥∞ by equation (4.3) (cf. Remark 4.9).

Remark 4.12. Let us point out that the method from the proof of Theo-

rem 4.10 can be also used to show Theorem 4.1.

4.4 Problem in one space dimension

The proof of Theorem 4.2 requires the following two auxiliary lemmas. First,

we �nd an estimate of cx(t) which is uniform in time.

Lemma 4.13. Let the assumptions of Theorem 4.2 hold true and denote

by (u,c,n,w) the corresponding nonnegative local-in-time solution to problem

(4.1)�(4.6) on [0, T ] constructed in Theorem 4.6. For each p ∈ [1,∞) there

exists a constant C = C(p) > 0 independent of T such that ∥cx(t)∥p ≤ C for

all t ∈ (0, T ]. Moreover, if the solution is global-in-time, then limt→∞ ∥cx(t)∥p =
0 for each p ∈ [1,∞).

Proof. Using the Duhamel principle (4.16) and the estimate of the heat semi-

group (A.3) we obtain

∥cx(t)∥p ≤ ∥∂xet∆−βtc0∥p + α

∫ t

0

∥∂xe(∆−β)(t−s)u(s)∥p ds

≤ Ce−βt∥c0,x∥p + C

∫ t

0

(t− s)−
1
2
(1− 1

p
)− 1

2 e−(β+λ1)(t−s)∥u(s)∥1 ds
(4.35)

for all t ∈ (0, T ] and a constant C > 0 independent of t > 0. The right-hand

side of this inequality is bounded uniformly in t > 0 and independent of

T > 0 because of estimate (4.32). Moreover, if solution is global-in-time,

this converges to zero (cf. Lemma A.2 below) since limt→∞ ∥u(t)∥1 = 0 by

Theorem 4.10.
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Next, we show the boundedness of the L2-norm of u using usual energy

estimates. This result was already obtained in [22, 23] and we recall it for

the completeness of the exposition.

Lemma 4.14. Let the assumptions of Theorem 4.2 hold true. Moreover, let

(u, c, n, w) be the nonnegative local-in-time solution to problem (4.1)�(4.6)

constructed in Theorem 4.6. Then, there exists C independent of t such that

∥u(t)∥2 ≤ C for all t ∈ [0, T ].

Proof. After multiplying equation (4.1) by u and integrating over Ω we obtain

1

2

d

dt

∫
Ω

u2 dx+

∫
Ω

(ux)
2 dx+

∫
Ω

b(n)u2 dx =

∫
Ω

g(u)nu2 dx

+

∫
Ω

ucxχ
′(c)ux dx.

Thus, by the Cauchy inequality and Standing Assumptions on the functions

g, b and χ, we get

1

2

d

dt

∫
Ω

u2 dx+
1

2

∫
Ω

(ux)
2 dx+ b(∥n0∥∞)

∫
Ω

u2 dx

≤ G0∥n0∥∞
∫
Ω

u2 dx+
∥χ′∥2L∞(R)

2

∫
Ω

u2(cx)
2 dx,

(4.36)

where constants b(∥n0∥∞) = infn b(n) > 0 and G0 = supu g(u) > 0 are �nite

by Standing Assumptions. To deal with the last term on the right-hand side

of (4.36) we use estimate (4.32) and Lemma 4.13 combined with the Hölder,

Sobolev and the ε-Cauchy inequalities in the following way∫
Ω

u2(cx)
2 dx ≤ ∥u∥24∥cx∥24 ≤ C∥u∥W 1,2∥u∥1∥cx∥24 ≤ ε∥u∥2W 1,2 + C(ε),

where C(ε) = C(ε, ∥u∥1, ∥cx∥4) is uniformly bounded in t. Moreover, by the

Sobolev inequality and the Young inequality, we have∫
Ω

u2 dx ≤ C∥u∥2/3W 1,2∥u∥4/31 ≤ ε∥u∥2W 1,2 + Cε∥u∥21, (4.37)

Therefore, for every ε > 0 there is a constant C(ε) > 0 such that

1

2

d

dt

∫
Ω

u2 dx+
1

2

∫
Ω

(ux)
2 dx+ b(∥n0∥∞)

∫
Ω

u2 dx ≤ ε∥u∥2W 1,2 +C(ε). (4.38)
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The term on the right-hand side of (4.38) containing small ε > 0 can be

absorbed by the corresponding two terms on the left-hand side. Thus, we

obtain the following di�erential inequality

d

dt

∫
Ω

u2 dx+ C∥u∥2W 1,2 ≤ C,

with a constant C > 0, which, in particular, implies that ∥u(t)∥2 has to be

bounded uniformly in t.

The reminder of this section is devoted to the proof of Theorem 4.2 on the

large time behaviour of solutions to problem (4.1)�(4.6) in a one dimensional

domain.

Proof of Theorem 4.2. The local-in-time solutions constructed in Theorem

4.6 can be extended to all t > 0 due to a priori estimates, which we will

obtain below in the study of the large time behaviour of solution. We skip

this standard reasoning and we proceed directly to estimates of solutions for

large values of t > 0.

Step 1: limt→∞ ∥u(t)∥∞ = 0. We apply the Duhamel principle (4.15) in

the following way∥∥∥u(t)− e∆tu0 −
∫ t

0

e∆(t−s)u(s)(g(u)n− b(n))(s) ds
∥∥∥
∞

=
∥∥∥∫ t

0

∂xe
∆(t−s)u(s)cx(s)χ

′(c) ds
∥∥∥
∞
.

(4.39)

Using the property of the heat semigroup (A.3), the Hölder inequality, and

Standing Assumptions on the function χ we estimate the right-hand side of

(4.39) as follows∥∥∥ ∫ t

0

∂xe
∆(t−s)u(s)cx(s)χ

′(c) ds
∥∥∥
∞

≤ C∥χ′∥∞
∫ t

0

(t− s)−
5
6 e−λ1(t−s)∥u(s)cx(s)∥3/2 ds

≤ C∥χ′∥∞
∫ t

0

(t− s)−
5
6 e−λ1(t−s)∥u(s)∥2∥cx(s)∥6 ds.

(4.40)

Thus, by Lemma A.2 below, the integral on the right-hand side of (4.40)

tends to zero because ∥u(t)∥2 is bounded by Lemma 4.14 and because ∥cx(t)∥6
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tends to zero, which is proved in Lemma 4.13. Hence, coming back to identity

(4.39), we see that

∥u(t)− v(t)∥∞ → 0 as t→ ∞, (4.41)

where v(x, t) is a solution to the problem

vt = vxx + g(u)nu− b(n)u, (4.42)

v(x, 0) = u0(x), (4.43)

supplemented with the Neumann boundary conditions. We denote the non-

linear term on the right-hand side of (4.42) by f ≡ g(u)nu− b(n)u and since

g, b and n are bounded, there exist a constant C > 0 such that

∥f(·, t)∥1 ≤ C∥u(t)∥1 → 0 as t→ ∞,

by Theorem 4.10. Hence, by Lemma A.3 we obtain∥∥∥v(t)− 1

|Ω|

∫
Ω

v(t) dx
∥∥∥
∞

→ 0 as t→ ∞. (4.44)

However, integrating equation (4.42) with respect to x and comparing it with

(4.25), it is easy to see that
∫
Ω
u(t) dx =

∫
Ω
v(t) dx for all t > 0. Therefore,

using (4.41) and (4.44) we obtain the convergence∥∥∥u(t)− 1

|Ω|

∫
Ω

u(t) dx
∥∥∥
∞

≤ ∥u(t)− v(t)∥∞ +
∥∥∥v(t)− 1

|Ω|

∫
Ω

u(t) dx
∥∥∥
∞

→ 0

as t → ∞, which, in virtue of Theorem 4.10, completes the proof that

limt→∞ ∥u(t)∥∞ = 0.

Step 2: Exponential decay of
∫
Ω
u(t) dx. Recall that the function b(n(x, t))

is bounded from below by b(∥n0∥∞) > 0 because b is decreasing, cf. Standing

Assumptions. Hence, since ∥u(t)∥∞ → 0 as t→ ∞ and since g(0) = 0, there

exist constants T > 0 and µ > 0 such that for all t ≥ T and all x ∈ Ω we

have (
g(u)n− b(n)

)
(x, t) ≤ −µ.

Thus, using equation (4.25) we get the following di�erential inequality

d

dt

∫
Ω

u(t) dx ≤ −µ
∫
Ω

u(t) dx,
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which implies the exponential decay

∥u(t)∥1 ≤ ∥u0∥1e−µt for all t > 0. (4.45)

Now, we use this estimate to improve Lemma 4.13.

Step 3: Exponential decay of ∥cx(t)∥p for each p ∈ [1,∞). Using the

exponential decay of ∥u(t)∥1 from (4.45) in estimate (4.35), we obtain

∥cx∥p ≤ Ce−βt∥c0,x∥p + C

∫ t

0

(t− s)−
1
2(1−

1
p)−

1
2 e−(β+λ1)(t−s)e−µs ds,

where the integral on the right-hand side decays exponentially by Lemma

A.2.

Step 4: Exponential decay of ∥c(t)∥∞. Applying the Duhamel principle

(4.16), computing the L∞-norm, and using the heat semigroup estimate (A.2)

we have

∥c(t)∥∞ ≤ Ce−βt∥c0∥∞ + C

∫ t

0

(
1 + (t− s)−

1
2

)
e−β(t−s)∥u(s)∥1 ds

for all t > 0 and a constant C > 0 independent of t > 0. Since ∥u(t)∥1 decays
exponentially, see (4.45), we complete the proof of this step by Lemma A.2,

again.

Step 5: Exponential decay of ∥u(t)∥∞. Here, it su�ces to repeat all

the estimates from Step 1 using the exponential decay estimates of ∥cx(t)∥6
established in Step 3 and the decay of ∥u(t)∥1 from Step 2.

Step 6: Exponential convergence limt→∞ ∥n(t)∥∞ = n∞. By Theorem

4.10, the limit

lim
t→∞

∫
Ω

n(t) dx ≡ n∞ =

∫
Ω

n0 dx−
∫ ∞

0

∫
Ω

γg(u)nu dx ds

exists and is nonnegative. This is, in fact, exponential convergence, because

by equation (4.27) and by Step 2 we have∣∣∣∣∫
Ω

n(t) dx− n∞

∣∣∣∣ ≤ γ

∫ ∞

t

∫
Ω

|g(u)nu| dx ds

≤ γG0∥n0∥∞
∫ ∞

t

∥u(s)∥1 ds ≤ Ce−µt.

Now, applying Lemma A.3 with f(x, t) = −γg(u)nu to equation (4.3), since

∥f(·, t)∥1 → 0 exponentially as t→ ∞, we obtain∥∥∥n(t)− 1

|Ω|

∫
Ω

n(t) dx
∥∥∥
∞

→ 0 exponentially as t→ ∞.
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Combining these two convergence results we complete the proof of Step 6.

Step 7: ∥w(t)− w∞∥∞ → 0 exponentially as t→ ∞. Here, we de�ne

w∞(x) = w0(x) +

∫ ∞

0

b(n(x, t))u(x, t) dt. (4.46)

Notice, that since b is bounded and ∥u(t)∥∞ decays exponentially, the right-

hand side of (4.46) belongs to L∞(Ω). Moreover, it is easy to see that

∥w(t)− w∞(x)∥∞ =

∥∥∥∥∫ ∞

t

b(n)u(x, s) ds

∥∥∥∥
∞

≤ C

∫ ∞

t

∥u(s)∥∞ ds

≤ C

∫ ∞

t

e−µs ds→ 0

exponentially as t → ∞. This completes the proof of Step 7 and of Theo-

rem 4.2.

4.5 Problem in higher dimensions

Proof of Theorem 4.3. As in the one dimensional case, we consider a non-

negative local-in-time solution to problem (4.1)�(4.6) which is constructed

in Theorem 4.6. This solution can be continued to the global one due to

estimates proved below.

Our �rst goal is to obtain an estimate for an Lp-norm of u(t) for a certain

�xed p, which is uniform in time. Here, we use the Duhamel formula (4.15)

in the following way

∥u(t)∥p ≤
∥∥∥e∆tu0 +

∫ t

0

e∆(t−s)u(s)(g(u)n− b(n))(s) ds
∥∥∥
p

+
∥∥∥ ∫ t

0

∇e∆(t−s)u(s)∇χ(c(s)) ds
∥∥∥
p
.

(4.47)

Step 1: Fixed p = p0 ∈
(
d
2
, d
d−2

)
. We are going to apply inequality (4.47)

with p = p0. As in Step 1 of the proof of Theorem 4.2, the �rst term on

the right-hand side of (4.47) will be denoted by ∥v(t)∥p0 , where v(x, t) is a
solution to the auxiliary problem (A.4)�(A.6) with f = u(g(u)n− b(n)) and

v0 = u0. Recall, that

∥f(t)∥1 ≤ ∥u(t)(g(u)n− b(n))(t)∥1 ≤ C∥u(t)∥1 for all t > 0.
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Hence, using Lemma A.3 (note that p0 <
d

d−2
), inequality (4.32), and the

elementary estimate ∥u0∥1 ≤ C(Ω)∥u0∥p0 , we obtain∥∥∥∥e∆tu0 +

∫ t

0

e∆(t−s)u(s)(g(u)n− b(n))(s) ds

∥∥∥∥
p0

≤ C(∥u0∥p0+∥n0∥1), (4.48)

for some constant C > 0 independent of t > 0.

Now, we deal with the second term on the right-hand side in (4.47). First,

using the heat semigroup estimate (A.3), the assumption χ′ ∈ L∞(R) and
the Hölder inequality with 1

q
= 1

p0
+ 1

2p0
we obtain∥∥∥∥∫ t

0

∇e∆(t−s)u(s)∇χ(c(s)) ds
∥∥∥∥
p0

≤ C

∫ t

0

(t− s)
− d

2
( 1
q
− 1

p0
)− 1

2 e−λ1(t−s)∥u∇χ(c(s))∥q ds

≤ C∥χ′∥∞
∫ t

0

(t− s)
− d

4p0
− 1

2 e−λ1(t−s)∥u(s)∥p0∥∇c(s)∥2p0 ds.

(4.49)

Notice, that, since p0 > d/2, the function (t− s)
− d

4p0
− 1

2 is integrable at s = t.

We proceed in a similar way using (4.16) and (A.2) to estimate

∥∇c(t)∥2p0 ≤
∥∥e(∆−β)t∇c0

∥∥
2p0

+

∫ t

0

∥∥∇e(∆−β)(t−s)u(s)
∥∥
2p0

ds

≤ e−βt∥∇c0∥2p0 + C

∫ t

0

(t− s)
− d

4p0
− 1

2 e−λ1(t−s)∥u(s)∥p0 ds.
(4.50)

Now, we de�ne function

f(t) ≡ sup
0≤s≤t

∥u(s)∥p0 .

Then, by inequality (4.50) we have that

∥∇c(t)∥2p0 ≤ ∥∇c0∥2p0 + Cf(t). (4.51)

Finally, applying estimates (4.48), (4.49) and (4.51) into (4.47) we obtain

∥u(t)∥p0 ≤ C
(
∥u0∥p0 + ∥n0∥1

)
+ Cf(t)

(
∥∇c0∥2p0 + Cf(t)

)
,

which implies the following inequality

f(t) ≤ C1(∥u0∥p0 + ∥n0∥1) + C2∥∇c0∥2p0f(t) + C3f
2(t) (4.52)
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for positive constants C1, C2 and C3 independent of t > 0 and of the solution.

Now, we prove that, for a su�ciently small initial datum, inequality (4.52)

implies that f(t) has to be bounded function.

Indeed, denote H(y) = C3y
2 + (B − 1)y + A, where B = C2∥∇c0∥2p0

and A = C1(∥u0∥p0 + ∥n0∥1). It is easy to check that for 4AC3 < (B − 1)2,

the equation H(y) = 0 has two roots, say y1 and y2. Moreover, for H ′(0) =

B − 1 < 0, those roots are both positive. Hence, since f(t) is nonnegative

and continuous if we assume that f(0) = ∥u0∥p0 ∈ (0, y1) then f(t) ∈ [0, y1]

for all t > 0. Note here that f(0) ≤ A because we can assume that C1 ≥ 1

without loss of generality. Moreover, by a direct calculation, we have A < y1.

Hence, f(0) ∈ (0, y1), and this completes the proof of Step 1.

Step 2: Estimate of supt>0 ∥u(t)∥∞. We come back to inequality (4.47)

with p = ∞. Note that 2 ∈ (d
2
, d
d−2

) for d ∈ {2, 3}. Hence, by Step 1, we have

that supt>0 ∥u(t)∥2 < ∞. Thus, we use Lemma A.4 with p = ∞ and q = 2

to obtain the following estimate of the �rst term on the right-hand side of

(4.47)∥∥∥∥e∆tu0 +

∫ t

0

e∆(t−s)u(s)(g(u)n− b(n))(s) ds

∥∥∥∥
∞

≤ C
(
∥u0∥p0 + ∥n0∥1 + sup

t>0
∥u(t)∥2

)
.

Now, we deal with the second term on the right-hand side of (4.47). First,

we consider the case d = 2. By Step 1, for each p ∈ [1,∞) there is a constant

C > 0 such that ∥u(t)∥p ≤ C for all t > 0. Using relation (4.51) we also

have that ∥∇c(t)∥p ≤ C for all t > 0 and for each p ∈ [1,∞). Hence, by

the heat semigroup estimate (A.3) and the Hölder inequality, we obtain the

inequalities∥∥∥∥∫ t

0

∇e∆(t−s)u(s)∇χ(c(s)) ds
∥∥∥∥
∞

≤ C

∫ t

0

(t− s)−
1
3
− 1

2 e−λ1(t−s)∥u∇χ(c(s))∥3 ds

≤ C∥χ′∥∞
∫ t

0

(t− s)−
5
6 e−λ1(t−s)∥u(s)∥6∥∇c(s)∥6 ds,

where the right-hand side is bounded uniformly in t > 0.

Next, we consider the case d = 3, where by Step 1, we have supt>0 ∥u(t)∥p <
∞ for each p ∈ [1, 3). Hence, using estimate (A.3) and the Hölder inequality,

cf. (4.50), we get

∥∇c(t)∥q ≤ e−βt∥∇c0∥q + C

∫ t

0

(t− s)−
3
2
( 1
p
− 1

q
)− 1

2 e−λ1(t−s)∥u(s)∥p ds. (4.53)
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Note, that the function (t − s)−
3
2
( 1
p
− 1

q
)− 1

2 is integrable at s = t for q < 3p
3−p

.

Hence, for each q ∈ [1,∞) there exists a constant C > 0 such that ∥∇c(t)∥q ≤
C for all t > 0.

Now, we are in a position to estimate the second term on the right-hand

side of (4.47) for d = 3 and we use the same reasoning as in the case d = 2.

First, for every p ∈ [1, 6) we obtain∥∥∥∥∫ t

0

∇e∆(t−s)u(s)∇χ(c(s)) ds
∥∥∥∥
p

≤ C

∫ t

0

(t− s)−
3
2
( 1
2
− 1

p
)− 1

2 e−λ1(t−s)∥u∇χ(c(s))∥2 ds

≤ C∥χ′∥∞
∫ t

0

(t− s)−
3
2
( 1
2
− 1

p
)− 1

2 e−λ1(t−s)∥u(s)∥5/2∥∇c(s)∥10 ds.

Since the function (t − s)−
3
2
( 1
2
− 1

p
)− 1

2 is integrable at s = t for each p < 6,

and since ∥u(s)∥5/2 and ∥∇c(s)∥10 are uniformly bounded in s > 0, we have

proved that for each p ∈ [1, 6) we have ∥u(t)∥p ≤ C for all t > 0.

Repeating these estimates for p = ∞, we obtain∥∥∥∥∫ t

0

∇e∆(t−s)u(s)∇χ(c(s)) ds
∥∥∥∥
∞

≤ C

∫ t

0

(t− s)−
3
2
· 1
4
− 1

2 e−λ1(t−s)∥u∇χ(c(s))∥4 ds

≤ C∥χ′∥∞
∫ t

0

(t− s)−
7
8 e−λ1(t−s)∥u(s)∥5∥∇c(s)∥20 ds,

where the right-hand side is uniformly bounded in t > 0. This completes the

proof of Step 2.

Step 3: Exponential convergence of (u(t), c(t), n(t), w(t)). First, we show

that limt→∞ ∥u(t)∥p = 0 for every p ∈ [1,∞). Here, it su�ces to combine the

standard interpolation inequality of Lp-norms

∥u(t)∥p ≤ C∥u(t)∥1/p1 ∥u(t)∥1−1/p
∞ , (4.54)

together with limt→∞ ∥u(t)∥1 = 0 provided by Theorem 4.10 and the estimate

supt>0 ∥u(t)∥∞ <∞ by Step 2.

Using this fact, we show that limt→∞ ∥u(t)∥∞ = 0 following the reason-

ing from Step 2 again. Next, we prove the exponential decay of ∥u(t)∥1 in

the same way as in Step 3 of the proof of Theorem 4.2. Therefore, using

interpolation equation (4.54) again, we get the exponential decay of ∥u(t)∥p
for every p ∈ [1,∞) as well. By this fact, one can follow the reasoning from

Step 2 once again, to obtain that ∥u(t)∥∞ → 0 exponentially as t → ∞.

Moreover, by equation (4.16) we immediately show the exponential decay of

∥c(t)∥∞.
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Finally, to obtain exponential convergence of ∥n(t)∥∞ and ∥w(t)∥∞ it

su�ces to repeat arguments from Step 6 and 7 of the proof of Theorem 4.2.

Remark 4.15. For d ≥ 3 and under suitable smallness assumptions on

initial data, we may show an exponential decay of the vector

(∥u(t)∥∞, ∥c(t)∥∞, ∥n(t)∥∞, ∥w(t)∥∞)

in the following way. First, multiplying equation (4.1) by up−1 and integrating

over Ω we obtain

d

dt

∫
Ω

up(t) dx ≤ −C
∫
Ω

|∇u
p
2 (t)|2 dx+ C

∫
Ω

u
p
2∇u

p
2 (t) · ∇χ(c(t)) dx

+p

∫
Ω

up(t)(g(u)n− b(n))(t) dx,

(4.55)

for some positive constant C = C(p). Now, let us notice that by Standing

Assumptions we have infn b(n) = b(∥n0∥∞) > 0. Hence, choosing ∥n0∥∞ so

small to have

g(u)n− b(n) ≤ G0∥n0∥∞ − b(∥n0∥∞) = −r < 0,

we obtain the estimate∫
Ω

up(g(u)n− b(n)) dx ≤ −r
∫
Ω

up dx = −r∥u
p
2 (t)∥22.

Thus, we get from equation (4.55) the following estimate

d

dt

∫
Ω

up(t) dx ≤ −C1∥up/2(t)∥2W 1,2(Ω) + C∥χ′∥∞
∫
Ω

|∇up/2(t)|up/2(t)|∇c(t)| dx

with the constant C1 = min{r, 4(p − 1)/p}. Moreover, we use the Hölder

inequality to obtain

d

dt

∫
Ω

up(t) dx ≤ −C1∥u
p
2 (t)∥2W 1,2(Ω) + 2(p− 1)∥u

p
2 (t)∥ 2d

d−2
∥∇u

p
2 (t)∥2∥∇c(t)∥d.

(4.56)

Next, it su�ces to estimate ∥∇c(t)∥d using the Duhamel formula (4.16) and

arguments analogous to those in the proof of Theorem 4.3 to obtain, for each
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q ∈ (d
2
, d], the estimates

∥∇c(t)∥d ≤ Ce−(β+λ1)t∥∇c0∥d + C

∫ t

0

(t− s)−
d
2
( 1
q
− 1

d
)− 1

2 e−(β+λ1)(t−s)∥u(s)∥q ds

≤ Ce−(β+λ1)t∥∇c0∥d + C sup
0≤s≤t

∥u(s)∥q.

(4.57)

Moreover, we recall the following Sobolev inequality

∥u
p
2∥ 2d

d−2
≤ C∥u

p
2∥W 1,2(Ω). (4.58)

Hence, using inequalities (4.57) and (4.58) in (4.56) and choosing p = q ∈
(d
2
, d] we obtain

d

dt

∫
Ω

up(t) dx ≤ ∥u
p
2 (t)∥2W 1,2(Ω)

(
C
(
∥∇c0∥d + sup

0≤s≤t
∥u(s)∥p

)
− C1

)
.

(4.59)

Observe now that, if the norms ∥∇c0∥d and ∥u0∥p are small enough, the

right-hand side of inequality (4.59) is negative for t ∈ [0, ε] for small ε > 0.

Thus, ∥u(t)∥p decreases on [0, ε]. We can repeat this argument on [ε, 2ε] and,

by induction, for all t > 0. Since ∥u(t)∥p is decreasing, we have

C
(
∥∇c0∥d + sup

0≤s≤t
∥u(s)∥p

)
− C1 ≤ C

(
∥∇c0∥d + ∥u0∥p

)
− C1 < 0.

Hence, using the obvious inequality ∥up/2∥2W 1,2(Ω) ≥
∫
Ω
up dx, we obtain from

(4.59) the exponential decay of ∥u(t)∥p for each p ∈ (d/2, d]. To show the ex-

ponential decay of this norm for other p ∈ [1,∞], and to show the exponential

convergence of (c, n, w) toward
(
0, n∞, w∞(x)

)
, it su�ces to use a reasoning

similar to that one in the proof of Theorem 4.3.

4.6 Blow up of solutions in two dimensional

case

Proof of Theorem 4.5. Here, we are inspired by analogous proofs of a blow

up of solutions to the parabolic-elliptic model of chemotaxis and we follow

the work of Nagai [36]. For given numbers r1 and r2 satisfying 0 < r1 <

r2 < dist(q, ∂Ω), we de�ne the function ϕ ∈ C1([0,∞)) ∩W 2,∞((0,∞)) by
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the formula

ϕ(r) :=


r2 for 0 ≤ r ≤ r1,

a1r
2 + a2r + a3 for r1 ≤ r ≤ r2,

r1r2 for r > r2,

where

a1 = − r1
r2 − r1

, a2 =
2r1r2
r2 − r1

, a3 = − r21r2
r2 − r1

.

Hence, for �xed q ∈ Ω, the function φ(x) = ϕ(|x− q|) satis�es φ ∈ C1(R2)∩
W 2,∞(R2). Moreover, by direct computations, we obtain

∇φ(x) =


2x for |x| ≤ r1,

2r1
r2 − r1

(r2 − |x|) x
|x|

for r1 ≤ |x| ≤ r2,

0 for |x| > r2,

(4.60)

|∇φ(x)| ≤ 2(φ(x))1/2, (4.61)

∆φ(x) = 4 for |x| ≤ r1 and ∆φ(x) ≤ 2 for |x| > r1. (4.62)

Now, we consider a nonnegative solution (u, c, n) of problem (4.10)�(4.14)

on an interval [0, Tmax) and de�ne mass and the generalized moment by the

formulas

M(t) =

∫
Ω

u(x, t) dx and I(t) =

∫
Ω

u(x, t)φ(x) dx.

By relation (4.62), it is clear that∫
Ω

u(x, t)∆φ(x) dx ≤ 4M(t). (4.63)

Moreover, since the functions b, g and n are bounded and nonnegative, we

obtain the following estimate∫
Ω

(g(u)n− b(u))(x, t)u(x, t)φ(x) dx ≤ C3I(t), (4.64)

where C3 = G0∥n0∥∞.

Next, we recall an estimate which is a straightforward adaptation of the

result from [36] to system (4.10)�(4.12).
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Lemma 4.16 ([36, Lemma 3.1]). Let q ∈ Ω, 0 < r1 < r2 < dist(q, ∂Ω) and

φ(x) = ϕ(|x − q|) be de�ned as above. Then, for all t ∈ (0, Tmax), we have

the following estimate∫
Ω

u(x, t)∇φ(x) · ∇c(x, t) dx ≤ − 1

2π
M(t)2 + C1M(t)I(t) + C2M(t)3/2I(t)1/2

for some constants C1, C2 depending on r1, r2 and dist(q, ∂Ω), only.

Now, multiplying equation (4.10) by φ(x), integrating over Ω and using

estimates (4.63)�(4.64) together with Lemma 4.16 we obtain

d

dt
I(t) ≤ 4M(t)− χ0

2π
M2(t) + (C1χ0M(t) + C3)I(t) + C2χ0M(t)3/2I(t)1/2.

Note that for all s > 0 and ε > 0 we have the inequality s1/2 ≤ ε + 1
4ε
s.

Hence, for �xed ε > 0, which will be chosen later, we use inequality (4.32)

to obtain

d

dt
I(t) ≤ 4M(t) + ε− χ0

2π
M2(t) + C4I(t), (4.65)

where

C4 = C3 + C1χ0(∥u0∥1 +
1

γ
∥n0∥1) +

C2
2χ

2
0(∥u0∥1 + 1

γ
∥n0∥1)3

4ε
. (4.66)

Estimate (4.65) immediately implies that

d

dt

(
I(t)e−C4t

)
≤

(
4M(t) + ε− χ0

2π
M2(t)

)
e−C4t. (4.67)

Next, integrating equation (4.10) over Ω and using the inequalities 0 ≤
g(u)n ≤ C3 = G0∥n0∥∞ and 0 < b(t) ≤ B0, we deduce that

d

dt
M(t) ≤ C3M(t) and

d

dt
M(t) ≥ −B0M(t),

hence,

M(t) ≤M0e
C4t and M(t) ≥M0e

−B0t for all t > 0. (4.68)

Substituting estimates (4.68) in (4.67) we obtain the inequality

d

dt

(
I(t)e−C4t

)
≤ 4M0 + ε− χ0M

2
0

2π
e−(C4+2B0)t,
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which implies

I(t)e−C4t ≤ I(0) + (4M0 + ε)t− χ0M
2
0

2π(C4 + 2B0)
(1− e−(C4+2B0)t). (4.69)

To complete the proof of the nonexistence of global-in-time solutions, it

su�ces to show that right-hand side of inequality (4.69) is negative for some

t > 0. Hence, it su�ces to study the function f(t) = A+ Bt−D(1− e−kt).

First, note that f attains its minimum at a certain point if and only if

B < kD, which is the case if the number 1
2π
M0(8π − χ0M0) + ε is negative.

Here, one can chose for instance ε = 1
4π
M0(χ0M0−8π). Thus, for su�ciently

small f(0) = I(0) = A there exist t > 0 such that f(t) < 0.

Hence, under these assumptions the function I(t) becomes negative in a

�nite time, which is impossible due to positivity of
∫
Ω
u(x, t)φ(x) dx. This

means that a solution u(t) with su�ciently small initial generalized moment

I(0) and the initial mass satisfying M0 > 8π/χ0 cannot be continued for all

t > 0.
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Complementary material

First, we recall some standard estimates on heat semigroup in bounded do-

main with the Neumann boundary condition.

Lemma A.1. Let λ1 > 0 denote the �rst nonzero eigenvalue of −∆ in Ω

under Neumann boundary conditions. Then there exist constants C1, C2

independent of t, f which have the following properties.

(i) If 1 ≤ q ≤ p ≤ +∞ then

∥et∆f∥Lp(Ω) ≤ Ct−
d
2(

1
q
− 1

p)e−λ1t∥f∥Lq(Ω) (A.1)

holds for all f ∈ Lq(Ω) satisfying
∫
Ω
f dx = 0.

(ii) If 1 ≤ q ≤ p ≤ +∞ then

∥et∆f∥Lp(Ω) ≤ C
(
1 + t−

d
2(

1
q
− 1

p)
)
∥f∥Lq(Ω) (A.2)

holds for all f ∈ Lq(Ω).

(iii) If 1 ≤ q ≤ p ≤ +∞ then

∥∇et∆f∥Lp(Ω) ≤ Ct−
d
2(

1
q
− 1

p)−
1
2 e−λ1t∥f∥Lq(Ω) (A.3)

is true for all f ∈ Lq(Ω).

Proofs of above inequalities (A.1)�(A.3) are well-known and can be found

e.g. in [45], see also [50, Lemma 1.3].

Next, we recall a technical lemma which we use systematically in Chap-

ter 4. We omit its elementary proof.
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Lemma A.2. Let f ∈ L∞(0,∞) satisfy limt→∞ f(t) = 0. Then, for each

k > −1 and M > 0, we have limt→∞
∫ t

0
(t−s)ke−M(t−s)f(s) ds = 0. Moreover,

the decay rate is exponential if the function f(t) → 0 as t→ ∞ exponentially.

The following result on the large time behaviour of solutions to the nonho-

mogeneous heat equation seems to be known. However, for the completeness

of the exposition, we present its proof.

Lemma A.3. Let Ω ⊂ Rd be a bounded domain and let

p ∈ [1,∞] if d = 1, p ∈ [1,∞) if d = 2, p ∈
[
1,

d

d− 2

)
if d ≥ 3.

Assume that v0 ∈ Lp(Ω) and f(x, t) ∈ L∞([0,∞), L1(Ω)) Then, the solution

to the following initial value problem

vt = ∆v + f(x, t) for x ∈ Ω, t > 0, (A.4)

∂v

∂ν
= 0, for x ∈ ∂Ω, t > 0, (A.5)

v(x, 0) = v0(x) for x ∈ Ω (A.6)

satis�es

∥v(t)∥p ≤ C
(
∥v0∥p + ∥v(t)∥1 + sup

s>0
∥f(s)∥1

)
for all t > 0, (A.7)

where a constant C is independent of t > 0. Moreover, if ∥f(·, t)∥1 → 0 as

t→ ∞ then we have∥∥∥∥v(t)− 1

|Ω|

∫
Ω

v(t) dx

∥∥∥∥
p

→ 0 as t→ ∞. (A.8)

In addition, if ∥f(·, t)∥1 → 0 exponentially as t → ∞, then the convergence

in (A.8) is exponential, as well.

Proof. The function

w(x, t) = v(x, t)− 1

|Ω|

∫
Ω

v(x, t) dx (A.9)

is a solution to the following initial value problem

wt = ∆w + f(x, t)− 1

|Ω|

∫
Ω

f(x, t) dx for x ∈ Ω, t > 0,

w(x, 0) = w0(x) = v0(x)−
1

|Ω|

∫
Ω

v0(x) dx,
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supplemented with the Neumann boundary condition. We estimate the Lp-

norm of w using its Duhamel representation

w(t) = e∆tw0 +

∫ t

0

e∆(t−s)

(
f − 1

|Ω|

∫
Ω

f dx

)
ds. (A.10)

Obviously we have
∥∥∥f(s)− 1

|Ω|

∫
Ω
f(x, s) dx

∥∥∥
1
≤ 2∥f(s)∥1. Thus, we may use

estimate (A.1) (note that
∫
Ω
w(x, t) dx = 0 for all t ≥ 0) in the following way

∥w(t)∥p ≤ Ce−λ1t∥w0∥p + C

∫ t

0

(t− s)−
d
2
(1− 1

p
)e−λ1(t−s)∥f(s)∥1 ds. (A.11)

Now, the inequality −d
2
(1− 1

p
) > −1 holds true due to the assumption on p.

Moreover, notice that by the de�nition of w in (A.9), we have the following

elementary inequalities

∥v(t)∥p ≤ ∥w(t)∥p + |Ω|
1−p
p ∥v(t)∥1 (A.12)

∥w0∥p ≤ ∥v0∥p + |Ω|
1−p
p ∥v0∥1 ≤ C∥v0∥p. (A.13)

Thus, applying estimates (A.12)�(A.13) in inequality (A.11) we obtain bound

(A.7) because supt>0

∫ t

0
(t− s)−

d
2
(1− 1

p
)e−λ1(t−s) ds <∞.

To show (A.8), we apply Lemma A.2 in inequality (A.11) which completes

the proof of Lemma A.3.

Next, we slightly generalise estimates from Lemma A.3.

Lemma A.4. Let Ω ⊂ Rd be bounded and let p ∈ [1,∞]. Assume that

v0 ∈ Lp(Ω) and f ∈ L∞((0,∞), Lq(Ω)) for some dp
2p+d

≤ q ≤ p. Then there

exists a constant C > 0 such that the solution of problem (A.4)�(A.6) satis�es

∥v(t)∥p ≤ C
(
∥v0∥p + ∥v(t)∥1 + sup

t>0
∥f(s)∥1 + sup

t>0
∥f(s)∥q

)
for all t > 0. Moreover, if ∥f(·, t)∥1 → 0 and ∥f(·, t)∥q → 0 as t → ∞ then

we have ∥∥∥∥v(t)− 1

|Ω|

∫
Ω

v(t) dx

∥∥∥∥
p

→ 0 as t→ ∞. (A.14)

In addition, if ∥f(·, t)∥1 → 0 and ∥f(·, t)∥q → 0 exponentially as t → ∞,

then the convergence in (A.14) is exponential as well.
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Proof. We proceed in the same way as in the proof of Lemma A.3. The only

di�erence consists in rewriting inequality (A.11) in the following way

∥w(t)∥p ≤ Ce−λ1t∥w0∥p

+ C

∫ t

0

(t− s)−
d
2
( 1
q
− 1

p
)e−λ1(t−s)

(
∥f(s)∥q + |Ω|

1−q
q ∥f(s)∥1

)
ds.

This ends the proof of Lemma A.4.
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